Uutiset

Terveyspalvelujen käyttöä ennustava neuroverkkomalli voi säästää miljoonia

Suomessa kehitetty malli ennustaa iäkkäiden terveyspalveluiden käyttöä ja voi auttaa kohdentamaan rahoituksen tasapuolisemmin.

Illustration of neural networks in a hospital environment
Kuvituskuva: Matti Ahlgren / Aalto-yliopisto

Syvät neuroverkot ovat ihmisaivojen toimintaa jäljitteleviä koneoppimismenetelmiä. Nyt Aalto-yliopiston, Helsingin yliopiston ja Terveyden ja hyvinvoinnin laitoksen (THL) tutkijat ovat kehittäneet syvien neuroverkkojen avulla niin sanotun riskivakiointimallin. Se ennustaa, miten usein ikäihmiset käyvät vuoden aikana hoidettavina esimerkiksi terveyskeskuksessa tai sairaalassa.

Riskivakiointimallien tarkoituksena on ennustaa terveydenhuollon palveluiden käyttöä edellisten vuosien tietojen perusteella ja auttaa näin jakamaan rahoitusta terveydenhuollon palveluiden tarjoajille reilusti ja tehokkaasti. Malleja hyödynnetään monissa maissa, kuten Saksassa, Alankomaissa ja Yhdysvalloissa. Myös THL on kehittänyt malleja, joita voidaan käyttää Suomessa rahoituksen jakamiseen kunnille.

”Ilman mallia sellaiset terveyspalveluiden tuottajat, joiden potilaat sairastavat keskimääräistä enemmän, joutuisivat epäreiluun asemaan”, Aalto-yliopiston apulaisprofessori Pekka Marttinen sanoo. 

Nykyisin käytössä olevat mallit perustuvat perinteisiin tilastollisiin regressiomalleihin. Tämä oli ensimmäinen kerta, kun tutkijat käyttivät riskivakiointimallin kehittämisessä syviä neuroverkkoja. Tutkimus osoitti, että neuroverkkomalli on ennustuksissaan perinteisiä menetelmiä selvästi luotettavampi ja tarkempi. Näin se voi auttaa jakamaan rahaa palveluntuottajien todellisen tarpeen mukaan ja kannustaa niitä kustannustehokkuuteen. 

”Tällaisen mallin kehittäminen voi auttaa säästämään miljoonia euroja”, sanoo tohtorikoulutettava Yogesh Kumar.

Tutkijat opettivat mallia THL:n perusterveydenhuollon avohoidon hoitoilmoitusrekisteristä (Avohilmo) saatavilla tiedoilla, joissa on mukana jokaisen 65 vuotta täyttäneen suomalaisen terveydenhuollon avokäynnit. Data on pseudonymisoitu eli yksittäistä henkilöä ei voi tunnistaa sen perusteella. Avohilmoa hyödynnettiin nyt ensimmäistä kertaa koneoppimismallin kouluttamiseen.

Syvät neuroverkot eivät myöskään välttämättä vaadi valtavasti dataa tuottaakseen luotettavia tuloksia. Tutkimuksessa malli oli verrokkimenetelmiä tarkempi jopa silloin, kun se pystyi hyödyntämään vain noin kymmentä prosenttia kaikesta saatavilla olevasta datasta. Luotettavien tulosten saaminen suhteellisen pienellä tietomäärällä on tärkeää, sillä lääketieteessä suurten datamassojen saaminen tutkimuskäyttöön on vaikeampaa kuin monilla muilla aloilla.

”Tässä työssä kehitettyä mallia ei ole tarkoitus ottaa käyttöön sellaisenaan, vaan tavoitteena on integroida koneoppimismallien ominaisuuksia nykyisin käytettäviin malleihin. Näin voimme yhdistää eri menetelmien parhaat puolet”, Marttinen huomauttaa. 

”Tulevaisuudessa tavoitteena on hyödyntää näitä malleja päätöksenteon tukena, jolloin rahoitus saadaan jaettua asianmukaisemmin.”

Mallissa voidaan myös keskittyä esimerkiksi potilasryhmiin, joiden hoito on kallista tai terveyskeskuksiin tietyillä maantieteellisillä alueilla. Tutkimustulokset julkaistiin Proceeding of Machine Learning Research -julkaisusarjassa.

Lisätiedot

Yogesh Kumar (englanniksi)
Tohtorikoulutettava
Aalto-yliopisto, Suomen tekoälykeskus
yogesh.kumar@aalto.fi

Pekka Marttinen
Apulaisprofessori
Aalto-yliopisto, Suomen tekoälykeskus
Puh. 050-5124362
pekka.marttinen@aalto.fi

  • Päivitetty:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Henkilö puhuu älykelloon, jossa on hopeinen verkkoranneke ja näytöllä aaltomuoto.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Äänesi paljastaa enemmän kuin uskot – tutkijat kehittävät keinoja suojata puheeseen kätkeytyvää tietoa

Puheteknologiat yleistyvät vauhdilla, ja samalla kasvaa riski siitä, että ääni paljastaa arkaluonteista tietoa terveydestä, taustoista tai mielipiteistä. Aalto-yliopiston tutkijat kehittävät keinoja mitata ja rajoittaa sitä, mitä kaikkea puheesta voidaan päätellä.
Kolme ihmistä istuu bussipysäkillä, takanaan karttoja ja kylttejä. Yhdellä on reppu maassa.
Tutkimus ja taide Julkaistu:

Aallon vuosi 2025: Kvanttihyppyjä, luovia loikkia ja ratkaisuja parempaan elämään

Kasvua, teknologiaa ja teollisuuden uudistumista, ihmislähtöisiä ratkaisuja, terveys ja arjen hyvinvointi sekä hauskaa arkea ja toimivia yhteisöjä.
Unite! Seed Fund 2026: Hakemus alkaa 20. tammikuuta. Hakemukset avoinna opiskelijatoimintaan, opetukseen ja tutkimukseen.
Yhteistyö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Unite! Seed Fund 2026: Hakukierros avautuu 20. tammikuuta 2026

Tutustu ennakkoon Unite! Seed Fund 2026 -hakukierrokseen. Haku sisältää kolme rahoituslinjaa: opiskelijatoiminta, opetus ja oppiminen sekä tutkimus ja tohtorikoulutus.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Nimitykset Julkaistu:

Deepika Yadav hyödyntää teknologiaa naisten terveyden parantamiseksi

Deepika Yadav aloitti äskettäin apulaisprofessorina Aalto-yliopiston tietotekniikan laitoksella. Hän erikoistuu ihmisen ja tietokoneen väliseen vuorovaikutukseen (HCI) sekä vuorovaikutussuunnitteluun terveyden ja hyvinvoinnin alalla.