News

Scientists test how wind turbines hold up to frozen flows in world’s largest indoor ice tank

Understanding the fundamentals of what happens when turbines meet ice could finally bring off-shore wind farms into chillier waters

In the great outdoors, ice can form, break, melt and refreeze many times over a season. Add the realities of a warming climate, and predicting how tons of frozen H20 behave is tricky business.

An international team from Aalto University, Delft University of Technology, and Siemens Gamesa Renewable Energy is working to find out just what happens when 200-metre tall wind turbines meet seriously frosty conditions, like those seen in Northern Europe’s Baltic Sea, North America’s Great Lakes or China’s Bohai Bay. At the moment, off-shore wind farms are largely located in waters that don’t enter deep freezes.

‘We don’t actually know what kinds of force and pressure ice creates on off-shore wind turbines,’ says Arttu Polojärvi, assistant professor of ice mechanics at Aalto University. ‘This is the first time anyone has carried out fully controlled model-scale laboratory experiments to find out.’

Aalto Ice Tank.jpg
Photo: Anna Berg/Aalto University

Ice-induced vibrations, the tiny or large shakes that occur when ice collides with infrastructure, are one of the major concerns for bringing the massive turbines into ice-infested areas.

Aalto Ice Tank, the world’s largest indoor ice basin measuring 40 by 40 metres, is one of the only places globally where researchers can customize huge slabs of ice and precisely test how they interact with these kinds of human-made structures.

‘What’s special about our experiments that we’ve tested at -11 degrees Celsius to make sure the ice is strong and breaks realistically,’ explains Hayo Hendrikse, assistant professor in ice-structure interaction at TU Delft.

The physical testing was carried out with a 30:1-scale model pile, with the help of numerical modelling to simulate wind and other conditions a wind turbine would encounter at sea. In real-life terms, the load exerted from the ice during the experiments would be around 8 meganewtons – that’s the combined thrust of 16 of the largest aircraft engines.

‘The preliminary results show something that we haven’t seen before in other structures, like lighthouses, channel markers, or oil and gas platforms. A wind turbine is very tall and slender and can move a lot; what we’ve seen in our experiments seems to be a totally new type of ice-induced vibration,’ says Hendrikse.

The Shiver project team is now working to create robust numerical models based on the data collected in order to test various scenarios that a wind turbine might encounter in chilly conditions over half a century of service. The data is available open access and is now published in the journal Data-in-Brief.

The research has been funded by Siemens Gamesa Renewable Energy and TKI Wind Op Zee. Polojärvi has recently received funding from The Academy of Finland to lead further development and create a modellingengine for forecasting future marine environmental and ice conditions. The aim is that the modelling engine will also aid in the the design and optimisation of cold-region offshore wind farms.

More information:

Available to comment on how ice breaks, related challenges of climate change and Aalto Ice Tank:

Arttu Polojärvi
Assistant professor, ice mechanics
Department of Mechanical Engineering
Aalto University
Tel: +358504301682
[email protected]

Available to comment on ice-induced vibration of offshore wind turbines and the experiments detailed above:

Hayo Hendrikse
Assistant professor, ice-structure interaction
Delft University of Technology
Tel: + 31152788223
[email protected]

  • Published:
  • Updated:

Read more news

A handbook on the counter of a shop.
Campus, Research & Art Published:

Unite!’s Open Science and Innovation Management Handbook now available online and in print

The handbook is a practical guide for university researchers, R&I support services, and university managers.
Research & Art, Studies Published:

New covers, writing templates and ordering system for doctoral theses

The current doctoral thesis ordering system will be replaced after 30 Nov 2024. New covers and writing templates have been designed for doctoral theses.
A serene Japanese garden with a pond, rocks, and various trees, including vibrant red and green foliage.
Press releases Published:

What makes nature restorative? Aalto University researchers explore Finnish forests and Japanese gardens

Biodiversity is central to the restorative power of Finnish forests.
Room with multiple speakers mounted on metal frames in a circular arrangement. A stool and a grid platform are in the center.
Press releases Published:

New technology brings immersive audio to everyone’s pockets

A new type of sound recording technology allows recording of immersive soundscapes with ordinary microphones and an inexpensive accessory