Uutiset

Elektronien välinen vuorovaikutus nähty orgaanisessa molekyylissä

Tutkijat ovat havainneet ja kuvanneet yhden molekyylin sisällä tapahtuvia elektronien välisiä vuorovaikutuksia.

Tutkimuksen tavoitteena on ymmärtää molekyylien elektronirakennetta ja vuorovaikutusilmiöitä  paremmin, jotta tutkimustietoa voidaan hyödyntää optoelektroniikan sovelluksissa, kuten orgaanisissa valodiodeissa (OLED), orgaanisissa kanavavaikutustransistoreissa (OFET) ja aurinkokennoissa.

Nature Physics -lehdessä julkaistussa artikkelissa Aalto-yliopiston ja Zürichin yliopiston tutkijat esittelevät kobolttiftalosyaniini-molekyylillä tehtyjä mittauksia, joiden ymmärtämiseksi täytyy ottaa elektronien vuorovaikutusilmiöt huomioon. Uusi havainto vahvisti, että kokeellisesti mittaukset ja teorian pohjalta tehdyt ennusteet vastaavat toisiaan. ”Oli erittäin jännittävää nähdä, miten teoria ja kokeet tuottivat saman tuloksen”, Peter Liljeroth Atomic Scale Physics –ryhmästä kertoo.

Vasen: Kobolttiftalosyaniinin (CoPC) kemiallinen rakenne. Oikea: Kobolttiftalosyaniinin kokeelliset ja teoreettiset aaltofunktiot.

Quantum Many-Body Physics –ryhmän vetäjä Ari Harju pitää tärkeänä, että teoreettisesti ennustettuja, monimutkaisia ilmiöitä voidaan havaita kokeellisesti. ”Tämä on tärkeä askel kun halutaan ymmärtää, miten sähkövirta siirtyy yksittäisissä molekyyleissä ja molekyyliryppäissä.”

Tohtoriopiskelija Fabian Schulz havaitsi, että kobolttiftalosyaniinimolekyyleillä tehdyt mittaukset eivät vastanneet tällaisten mittausten tavanomaista tulkintaa. ”Mitatuissa niin sanotuissa tunnelointispektreissä  näkyi useita ylimääräisiä piikkejä paikoissa, joissa niitä ei olisi pitänyt olla lainkaan”, Schulz kertoo.

Kokeet tehtiin kobolttiftalosyaniinimolekyyleillä (CoPC), jotka olivat yhden atomin paksuisella boorinitridikerroksella iridiumpinnalla

Ari Harju toi esiin ajatuksen, että koetuloksia voitaisiin ymmärtää ottamalla huomioon elektronien väliset vuorovaikutukset, jotka tavallisesti ohitetaan tällaisten kokeiden tulkinnassa. Ari Harju tiimeineen yhteistyössä Zürichin yliopiston Ari P. Seitsosen kanssa laski teoreettiset ennusteet koetuloksille ottaen huomioon myös vuorovaikutusilmiöt.

Peter Liljerothin johtama Atomic Scale Physics ‑ryhmä on erikoistunut pyyhkäisytunnelointimikroskopiaan (STM), jossa näytteen rakenteellisia ja sähköisiä ominaisuuksia mitataan atomitason tarkkuudella käyttämällä pientä sähkövirtaa, joka kulkee terävän mittakärjen ja johtavan pinnan välillä.

Tunnelointimikroskoopin (STM) kuva  kobolttiftalosyaniinimolekyyleistä (CoPC) kahdessa eri varaustilassa.

Tässä tutkimuksessa Liljerothin ryhmä käytti STM-tekniikkaa pinnan yhden molekyylin läpi kulkevan virran mittaamiseen lisäämällä tai poistamalla eri energiatasoilla olevia elektroneja. Elektronit ”elävät” molekyylin sisällä ns. molekyyliorbitaaleilla, jotka määrittävät niiden energian ja kvanttimekaanisen aaltofunktion muodon. Näitä orbitaaleja voidaan tutkia kokeellisesti mittaamalla molekyylin läpi kulkevaa virtaa jännitteen funktiona.

Tutkimus tehtiin Aalto-yliopiston teknillisen fysiikan laitoksella ja Zürichin yliopistolla. Aalto-yliopiston ryhmät kuuluvat Suomen Akatemian Matalien lämpötilojen kvantti-ilmiöiden ja komponenttien ja Laskennallisen nanotieteen huippuyksiköihin. Tutkimusta ovat rahoittaneet Suomen Akatemia ja Euroopan tutkimusneuvosto ERC.

Nature Physics artikkeliin


Lisätietoa:

Peter Liljeroth
[email protected]
puh. +358 50 363 6115
http://physics.aalto.fi/groups/stm/

Ari Harju
[email protected]
puh. +358 50 571 0412
http://physics.aalto.fi/groups/comp/qmp

Teknillisen fysiikan laitos
Aalto-yliopiston perustieteiden korkeakoulu
http://physics.aalto.fi/

  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Professori Maria Sammalkorpi
Tutkimus ja taide Julkaistu:

Tutustu meihin: Professori Maria Sammalkorpi

Sammalkorpi on väitellyt tohtoriksi Teknillisestä korkeakoulusta vuonna 2004. Väiteltyään Sammalkorpi on toiminut tutkijana mm. Princetonin ja Yalen yliopistoissa sekä Aalto-yliopistossa.
bakteereja ohjataan magneettikentän avulla
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Fyysikot saivat bakteerit uimaan lähes täydellisissä riveissä

Bakteerien ohjaaminen onnistui magneettikentän avulla. Löytö auttaa ymmärtämään bakteeripopulaatioiden käyttäytymistä ja voi jatkossa auttaa esimerkiksi kehittämään uuden sukupolven materiaaleja, joista kaavaillaan apua muun muassa lääkkeiden kohdennettuun kuljettamiseen kehon sisällä.
2020 rajanylitykset pohjoismaissa
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat loivat ainutlaatuisen ennustemallin kuvaamaan pandemian leviämistä maiden rajojen yli

Pohjoismainen yhteishanke pureutui koronaviruksen leviämiseen vuonna 2020. Tutkimuksen avulla voidaan jatkossa ennakoida paremmin, milloin ja mitkä matkustusrajoitukset ovat pandemiaolosuhteissa tarkoituksenmukaisia.
Event poster with a young researcher looking down with lighst and code reflected around her.
Yhteistyö, Tutkimus ja taide, Opinnot Julkaistu:

Unite! Research Week 14.-18.lokakuussa, Grenoble-Autrans

Verkostoitumistapahtuma tohtoriopiskelijoille Unite!-verkoston yliopistoista.