Uutiset

Tietokonesiru, joka ei koskaan ylikuumene? Nanokokoinen spinaaltolaite on askel kohti aivan uudenlaista laskentaa

Spinaaltoihin perustuva laskenta tehostaa erityisesti kuvankäsittelyä ja hahmontunnistusta.
A green laser light shining on a sample stage between two magnets
Fabry-Pérot -resonaattorissa olevien spinaaltojen kuvaamiseen käytettiin magneto-optista mikroskooppia. Kuva: Aalto-yliopisto

Laskennassa käytetyn sähkövirran aiheuttama ylikuumeneminen hidastaa yhä nopeampien ja pienempien tietokonesirujen kehittämistä. Nyt Aalto-yliopiston tutkijat ovat yhdessä saksalaistutkijoiden kanssa kehittäneet uuden nanokokoisen, spinaaltoihin perustuvan laitteen, joka voi mahdollistaa entistä pienempien ja energiatehokkaampien tietokonesirujen ja -laitteiden kehittämisen. Tutkimusartikkeli on julkaistu Nature Communications -lehdessä.

Spin on hiukkasten, esimerkiksi elektronien, sähkövarausta vastaava ominaisuus, ja magneettisissa materiaaleissa spiniä voidaan kuljettaa aallon muodossa. Spintroniikassa tutkitaan, miten spinejä voisi hyödyntää tiedon tallettamisessa, käsittelemisessä ja sen siirtämisessä.

Tutkijat halusivat käyttää spinaaltoja eli spinien kollektiivista värähtelyä magneettisissa materiaaleissa suorittaakseen laskelmia.

“Kun hyödynnämme spinaaltoja, sähkövaraus ei siirry, jolloin ei myöskään synny kuumenemista”, sanoo professori Sebastiaan van Dijken.

Tutkimusta varten he rakensivat spinaalloille soveltuvan Fabry-Pérot -resonaattorin. Se on optiikasta tuttu työväline, jota tyypillisesti hyödynnetään tarkkuutta vaativaan valonsäteiden aallonpituuden hallitsemiseen. Tutkijoiden rakentama resonaattori on halkaisijaltaan vain muutama sata nanometriä ja mahdollistaa spinaaltojen hallinnan ja suodattamisen.

Resonaattori tehtiin kerrostamalla päällekkäin hyvin ohuita magneettisia materiaalikerroksia. Niiden tarkkaan valitut magneettiset ominaisuudet mahdollistivat spinaaltojen vangitsemisen ja kumoamisen, mikäli ne eivät olleet täsmälleen toivotulla taajuudella.

“Menettely on uusi, mutta helppo toteuttaa. Siinä yhdistetään ja kuvioidaan vähähäviöisiä magneettisia materiaaleja, joita voimme tehdä Aallossa. Ja koska näiden laitteiden valmistaminen ei ole kovin vaikeaa, meillä on paljon mahdollisuuksia jatkotutkimukselle”, sanoo tutkijatohtori Huajun Qin.

Kuumenemattomuuden lisäksi spinaalloilla on perinteiseen elektroniikkaan verrattuna muita vahvuuksia. Perinteinen, varaukseen perustuva laskenta hyödyntää totuusarvoista eli nolliin ja ykkösiin perustuvaa logiikkaa laskelmien tekemiseksi. Spinaalloilla informaatio siirtyy aallon voimakkuuden tai vaiheen mukana, ja se mahdollistaa ei-totuusarvoisen laskennan.

”Tämän tyyppinen laskenta on erittäin tehokasta erityisesti tietyissä tehtävissä, kuten kuvankäsittelyssä ja hahmontunnistuksessa. Se on samankaltaista kuin optinen laskenta, joka käyttää lasereiden tai diodien tuottamia fotoneja laskennassa, mutta spinaallot ovat paljon pienempiä kuin sähkömagneettiset aallot samalla taajuudella. Järjestelmämme vahvuus on siis se, että sen pitäisi kokonsa puolesta olla helposti integroitavissa nykyteknologiaan”, van Dijken sanoo.

Nyt kun tutkijatiimi on rakentanut resonaattorin, jolla voi suodattaa ja hallita spinaaltoja, he aikovat seuraavaksi rakentaa kokonaisen piirin.

”Magneettista piiriä varten meidän täytyy pystyä ohjaamaan spinaaltoja kohti toiminnallisia komponentteja aivan kuten sähköiset kanavat ohjaavat virtaa elektronisilla mikrosiruilla. Tavoitteena on rakentaa samankaltaisia rakenteita spinaaltojen ohjaamiseksi”, Qin kertoo.

Tutkimus tehtiin yhteistyössä saksalaisen Martin Luther University Halle-Wittenberg -yliopiston tutkijoiden kanssa. Hanketta tukee Suomen Akatemia ja saksalainen tutkimussäätiö. Kansallista OtaNano-tutkimusinfrastruktuuria käytettiin näytteiden valmistamiseen.

Lisätietoa:

Artikkeli: Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave

Sebastiaan van Dijken
Professori
Aalto-yliopisto
[email protected]
puh. 050 316 0969
Tutkimusryhmän nettisivu

Huajun Qin
Tutkijatohtori
Aalto-yliopisto
[email protected]

  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

2020 rajanylitykset pohjoismaissa
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat loivat ainutlaatuisen ennustemallin kuvaamaan pandemian leviämistä maiden rajojen yli

Pohjoismainen yhteishanke pureutui koronaviruksen leviämiseen vuonna 2020. Tutkimuksen avulla voidaan jatkossa ennakoida paremmin, milloin ja mitkä matkustusrajoitukset ovat pandemiaolosuhteissa tarkoituksenmukaisia.
Event poster with a young researcher looking down with lighst and code reflected around her.
Yhteistyö, Tutkimus ja taide, Opinnot Julkaistu:

Unite! Research Week 14.-18.lokakuussa, Grenoble-Autrans

Verkostoitumistapahtuma tohtoriopiskelijoille Unite!-verkoston yliopistoista.
Harald Herlin Learning Center
Tutkimus ja taide Julkaistu:

Oppimiskeskuksessa pilotoidaan 19.8.2024 alkaen uusia aukioloaikoja

Opiskelijoiden ja henkilöstön mahdollisuudet käyttää tiloja ja kokoelmia laajentuvat.
Joukko ihmisiä kävelee Lehmuskujaa pitkin kesällä
Yhteistyö, Tutkimus ja taide, Yliopisto Julkaistu:

Vahva kokonaistulos: Suomen Akatemialta 27,5 miljoonaa euroa tutkimukseen

Akatemiatutkija- ja akatemiahankerahoituksen sai yhteensä 52 aaltolaista. Aalto-yliopistolle myönnetty rahoitus on kokonaisuudessaan 27,5 miljoonaa euroa.