Uutiset

Tutkijat havaitsivat kvanttimonopolin tuhoutumisen

Aalto-yliopiston ja Amherst Collegen tutkijat ovat tehneet maailman ensimmäiset kokeelliset havainnot yksittäisen monopolin dynamiikasta kvanttiaineessa.
Taiteellinen näkemys kvanttimekaanisen monopolin hajoamisesta Diracin monopoliksi. Kuva: Heikka Valja.

Tutkimus toi mukanaan yllätyksen: kvanttimekaaninen monopoli hajosi toiseksi magneettisen monopolin jäljitelmäksi. Työssä saavutettu uusi tieto monopolien dynamiikasta voi tulevaisuudessa auttaa löytämään vieläkin tarkemmin magneettisen monopolin kaltaisia rakenteita.

Magneettisilla monopoleilla on vain joko pohjois- tai etelänapa, mutta ei molempia kuten normaaleilla magneeteilla. Teoreettisesti magneettisia monopoleja on ennustettu olevan olemassa, mutta yhtään luotettavaa kokeellista havaintoa näistä alkeishiukkasista ei ole tehty. Niinpä tutkijat yrittävät kuumeisesti tehdä rakenteita, jotka jäljittelevät magneettisen monopolin ominaisuuksia mahdollisimman tarkasti.

– Vuonna 2014 toteutimme kokeellisesti niin kutsutun Diracin monopolin eli yli 80 vuotta vanhan teorian, jossa Paul Dirac alun perin kuvasi varattua kvanttimekaanista hiukkasta vuorovaikuttamassa magneettisen monopolin kanssa, sanoo professori David Hall Amherst Collegesta.

– Ja vuonna 2015 teimme ihan oikeita kvanttimekaanisia monopoleja, lisää dosentti Mikko Möttönen Aalto-yliopistosta.

Yhtäältä kokeet Diracin monopolista mallintavat varatun hiukkasen liikettä magneettikentässä, jossa on monopoli. Toisaalta kvanttimonopolissa itsessään on pistemäinen rakenne, joka muistuttaa magneettisen monopolin rakennetta.

Kokeellisesti otettu sivuttaiskuva kvanttimonopolista (vas.). Noin 0.2 sekunnin päästä kvanttimonopoli hajoaa Diracin monopoliksi (oik.). Eri värit kuvaavat atomien sisäisten magneettisten vapausasteiden suuntaa ja värin kirkkaus hiukkastiheyttä. Kuva: Tuomas Ollikainen.

Kvanttimonopolista toiseksi alle sekunnissa

Nyt Mikko Möttösen ja David Hallin johtama monopoliyhteistyö on tuottanut havainnon siitä, miten yksi magneettisen monopolin jäljitelmistä muuttuu spontaanisti toiseksi alle sekunnissa

– Kuulostaa helpolta, mutta meidän piti itse asiassa parantaa mittalaitteistoa näitä kokeita varten, sanoo julkaisun pääkirjoittaja, väitöskirjaansa valmisteleva Tuomas Ollikainen, joka suoritti suurimman osan kokeista ja data-analyysistä.

Kokeiden alussa tutkijat jäähdyttävät erittäin harvan rubidiumatomeista muodostuvan kaasun lähelle absoluuttista nollapistettä, jolloin se muodostaa Bosen–Einsteinin kondensaatin. Seuraavaksi he kääntävät lasereiden avulla atomit ei-magneettiseen tilaan ja luovat ulkoisten magneettikenttien avulla systeemiin yksittäisen kvanttimonopolin. Tämän jälkeen he pitävät ulkoista magneettikenttää paikallaan ja odottavat, jolloin kondensaatti alkaa magnetoitua itsestään ulkoisen paikassa muuttuvan magneettikentän suuntaiseksi. Tämä ei-magneettisen tilan tuhoutuminen hävittää myös kvanttimonopolin, mutta synnyttää samalla Diracin monopolin.

– Hypin ilmaan, kun näin ensi kertaa Diracin monopolin syntyvän hajoamisesta. Tämä yhdistää hienosti aikaisemmat monopolihavaintomme, sanoo Möttönen.

Pidemmällä kuin Nobel-fysiikka

Kvanttimonopoli on niin kutsuttu topologinen pisterakenne eli yksittäinen piste paikassa, josta sen kaikki kenttäviivat osoittavat ulospäin. Sitä ei voi poistaa repimättä koko tilaa rikki. Tällaiset rakenteet liittyvät läheisesti vuoden 2016 fysiikan Nobel-palkintoon, joka myönnettiin muun muassa teoreettisista löydöistä kvanttimekaanisten vorteksien eli pyörteiden vaikutuksista aineen olomuodon muutoksissa.

– Vorteksiviivoja on tutkittu supranesteissä kokeellisesti jo vuosikymmeniä, monopoleja on toisaalta tutkittu kokeellisesti vain muutama vuosi, sanoo Hall.

Vaikka kvanttimonopolin topologia suojaa sitä, se voi tuhoutua, koska koko kondensaatin olomuoto muuttuu ei-magneettisesta magneettiseksi.

– Riippumatta siitä miten vahvan jääveistoksen teet, se valuu viemäriin, kun jää sulaa, sanoo Ollikainen.

Laskenta suoritettiin Tieteen tietotekniikan keskus CSC:n ja Aalto-yliopiston laitteilla, ja monopolit tehtiin Amherst Collegen fysiikan laboratorioissa Yhdysvalloissa.

Näkymä laitteiston pääkoekammioon, jossa näkyvät monopolin sisältävän supranesteen muodostamisessa tarvittavat optiset komponentit ja magneettikentän luomiseen käytettävät käämit. Kuva: Marcus DeMaio/Amherst College.

Tutkimusartikkeli:
T. Ollikainen, K. Tiurev, A. Blinova, W. Lee, D. S. Hall ja M. Möttönen: Experimental realization of a Dirac monopole through the decay of an isolated monopole. Physical Review X 7, DOI: 10.1103/PhysRevX.7.021023
Ilmainen linkki: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.021023
Tämä tutkimusartikkeli tulee mainita informaation lähteenä.

Tutkimus perustuu työhön, jota on rahoitettu seuraavista lähteistä: the National Science Foundation (PHY-1519174), Suomen akatemian huippuyksikkörahoitus (251748 ja 284621) ja apuraha (308071), Euroopan tutkimusneuvoston apuraha 681311 (QUESS), Magnus Ehrnroothin säätiö, Education Network in Condensed Matter and Materials Physics, KAUTE-säätiön Tutkijat maailmalla -ohjelma.

Kvanttimonopolin teosta kertova video, 2015 (ei sisällä monopolien hajoamista)

Tiedotteen aiheesta kirjoitettu aiempi puhtaasti teoreettinen artikkeli
 

Lisätietoja:

Mikko Möttönen, dosentti, tekniikan tohtori
Aalto-yliopisto, teknillisen fysiikan laitos
p. 050 594 0950
[email protected]
http://physics.aalto.fi/en/groups/qcd/

David S. Hall, professori
Amherst College, USA
p. +1 413 542 2072  (aikavyöhyke: GMT -5)
[email protected]
http://www3.amherst.edu/~halllab/

Tuomas Ollikainen, diplomi-insinööri
Aalto-yliopisto, teknillisen fysiikan laitos
[email protected]
p. 050 435 4066
http://physics.aalto.fi/en/groups/qcd/

  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Event poster with a young researcher looking down with lighst and code reflected around her.
Yhteistyö, Tutkimus ja taide, Opinnot Julkaistu:

Unite! Research Week 14.-18.lokakuussa, Grenoble-Autrans

Verkostoitumistapahtuma tohtoriopiskelijoille Unite!-verkoston yliopistoista.
Harald Herlin Learning Center
Tutkimus ja taide Julkaistu:

Oppimiskeskuksessa pilotoidaan 19.8.2024 alkaen uusia aukioloaikoja

Opiskelijoiden ja henkilöstön mahdollisuudet käyttää tiloja ja kokoelmia laajentuvat.
Joukko ihmisiä kävelee Lehmuskujaa pitkin kesällä
Yhteistyö, Tutkimus ja taide, Yliopisto Julkaistu:

Vahva kokonaistulos: Suomen Akatemialta 27,5 miljoonaa euroa tutkimukseen

Akatemiatutkija- ja akatemiahankerahoituksen sai yhteensä 52 aaltolaista. Aalto-yliopistolle myönnetty rahoitus on kokonaisuudessaan 27,5 miljoonaa euroa.
Opiskelija Aallossa lukemassa kirjaa
Mediatiedotteet Julkaistu:

Aalto-yliopisto lisää toimenpiteitä päästöjen vähentämiseksi

Aalto-yliopisto on kartoittanut tärkeimpiä toimenpiteitä ilmastopäästöjen vähentämiseksi kaikilla yliopiston toiminnan alueilla. Suurimmat päästövähennykset saadaan energian hankinnasta ja käytöstä.