Uutiset

Tutkijat onnistuivat kiertämään kvanttimekaniikan kulmakivenä pidetyn epätarkkuusperiaatteen - välineinä kylmät kvanttirummut

Kvanttimekaniikassa tunnetun Heisenbergin epätarkkuusperiaatteen mukaan hiukkasen paikkaa ja nopeutta ei voida tietää samanaikaisesti. Tutkijat osoittavat nyt, kuinka makroskooppisen kokoiset värähtelevät rumpukalvot saadaan kvanttitilaan, jossa epätarkkuusperiaate voidaan kiertää.
The drumheads exhibit a collective quantum motion. Picture: Juha Juvonen.
Heisenbergin epätarkkuusperiaate voidaan kiertää kahdella värähtelevällä nanorummulla. Rummut saatiin tutkimuksessa lomittuneeseen kvanttitilaan, jossa kaukana toisistaan olevat kappaleet jakoivat toistensa ominaisuuksia. Kuva: Juha Juvonen.

Kvanttimekaniikan tärkeimpiä tuloksia on epätarkkuusperiaate, jonka Werner Heisenberg esitti 1920-luvun lopulla. Sen mukaan alkeishiukkaset, esimerkiksi sähkövirtaa kuljettavat elektronit, voivat käyttäytyä aaltoliikkeen tavoin. Tällöin hiukkasella ei voi olla samanaikaisesti hyvin määriteltyä paikkaa sekä nopeutta. Esimerkiksi nopeuden mittaaminen aiheuttaa häiriöitä hiukkasen paikalle, eikä paikkaa voida sen vuoksi tarkkaan määrittää.

Aalto-yliopiston professori Mika A. Sillanpään vetämä, Suomen Akatemian Quantum Technology Finland - huippuyksikköön kuuluva tutkimusryhmä on nyt löytänyt tavan kiertää epätarkkuusperiaate. Tulokset julkaistiin juuri arvostetussa Science-tiedelehdessä. Tutkijatiimiin kuului myös kokeen teoreettisen mallin kehittämisestä vastannut tutkijatohtori Matt Woolley South Walesin yliopistosta Australiasta.

Tutkijat käyttivät mittauksissa kahta rumpukalvoa, jotka ovat leveydeltään noin viidesosa hiuksen paksuudesta ja joita voidaan ajatella yhtenä värähtelijänä. Vaikka nanorummut ovat paljon yksittäisiä atomeita suurempia, ne saatiin kokeissa käyttäytymään kvanttimekaanisesti.

”Kahden rummun värähtelyt päätyvät kollektiiviseen kvanttitilaan, jossa ne värähtelevät vastakkaisissa vaiheissa siten, että kun toinen on liikkeen yhdessä ääripäässä, toinen on vastaavasti toisessa samalla ajanhetkellä. Tällaisessa tilanteessa rumpujen hetkellisen sijainnin kvanttimekaaninen epämääräisyys kumoutuu”, sanoo tutkijatohtori Laure Mercier de Lépinay Aalto-yliopistosta.

Tutkijat pystyivät siis häiriöttä mittaamaan samanaikaisesti rumpukalvojen paikan ja nopeuden – minkä ei Heisenbergin epätarkkuusperiaatteen perusteella pitäisi olla mahdollista. Tämän ansiosta tutkijat voivat määrittää värähtelijään vaikuttavia erittäin heikkoja voimia.

”Toisella rummulla on siis ikään kuin negatiivinen massa, jolloin se vastaa kaikkiin voimiin, myös kvanttimekaanisiin, vastakkaisella tavalla”, Sillanpää sanoo.

Tutkijat käyttivät ideaa hyväkseen ja esittivät toistaiseksi vahvimman todisteen siitä, että suuret kappaleet voivat päätyä niin sanottuun lomittuneeseen kvanttitilaan. Lomittuneessa tilassa hiukkaset tai kappaleet jakavat toistensa ominaisuuksia tavalla, joka on arkijärjen vastaista. Lomittuminen on perusta käynnissä olevalle kvanttiteknologian läpimurrolle. Kvanttitietokone voi suorittaa esimerkiksi lääkkeiden kehityksessä tarvittavaa laskentaa paljon nopeammin kuin mikään koskaan rakennettavissa oleva supertietokone.

Suurehkoissa kappaleissa, kuten nyt tutkituissa värähtelevissä rumpukalvoissa, kvanttimekaaniset ilmiöt tuhoutuvat hyvin herkästi ympäristön häiriöiden vaikutuksesta. Mittaukset suoritettiinkin hyvin matalissa lämpötiloissa, eli asteen sadasosan päässä absoluuttisesta nollapisteestä, -273 asteesta.

Tulevaisuudessa tutkimusryhmä käyttää näitä ideoita ja menetelmiä laboratoriotutkimuksissa, joissa pyritään selvittämään kvanttimekaniikan ja painovoiman yhteyttä. Värähtelevät kvanttirummut voivat olla myös sopivia kvanttiteknologiassa yhdistämään kvanttitietokoneita toisiinsa.

Tutkimuksessa on käytetty OtaNano-tutkimusinfrastuktuuria. Kansallinen ja avoin OtaNano tarjoaa korkeatasoisen kokeellisen ympäristön ja OtaNanon operoinnista vastaavat Aalto-yliopisto ja Teknologian tutkimuskeskus VTT.

Artikkeli: Quantum-mechanics free subsystem with mechanical oscillators

The highly competed ERC Advanced Grant, awarded to leading top researchers, is the third ERC grant won by Professor Mika A. Sillanpää. In 2009, he received the ERC Starting Grant targeted at talented young researchers and, in 2013, he was awarded the ERC Consolidator Grant intended for top researchers establishing their careers. Picture: Aalto University.

Fyysikko Mika A. Sillanpää sai jo kolmannen EU:n miljoonarahoituksen – uusi tutkimushanke sovittaa yhteen kvanttimekaniikkaa ja yleistä suhteellisuusteoriaa

Tutkijat ratkovat sata vuotta vanhaa fysiikan arvoitusta pienten kultapallojen ja äärimmäisen matalien lämpötilojen avulla. Värähtelevien pallojen välisen erittäin heikon painovoiman havainnointi voi ratkaista mysteerin.

Uutiset
  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Rauhallinen japanilainen puutarha, jossa on lampi, kiviä ja erilaisia ​​puita, mukaan lukien loistavaa punaista ja vihreää lehtineen.
Mediatiedotteet Julkaistu:
Opiskelijoita kampuksella. Kuva: Henri Vogt
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Yhä harvempi yliopisto-opiskelija jää kotiseudulleen Suomen suurimmissa kaupungeissa – uusi selvitys näyttää kaupunkikohtaiset erot

Aalto-yliopiston kaupunkitaloustieteen tutkimusryhmä AlueAvain on tarkastellut Tilastokeskuksen yksilötason rekisteriaineistojen avulla yliopisto-opiskelijoiden muuttoliikkeitä Suomen suurimmissa kaupungeissa viimeisten 20 vuoden aikana. Tarkastelussa vertailtiin erikseen pääkaupunkiseudun kuntia sekä Tamperetta, Turkua ja Oulua.
Huone, jossa on useita kaiuttimia metallirungoissa ympyrämuodossa. Keskellä on jakkara ja sälealusta.
Mediatiedotteet Julkaistu:

Uusi teknologia tuo immersiivisen tilaäänen kaikkien ulottuville

Ainutlaatuinen äänentallennusteknologia mahdollistaa immersiivisen äänimaailman tallentamisen tavallisilla mikrofoneilla ja edullisella lisälaitteella.
Ryhmä ihmisiä kävelee suurten ikkunoiden ohi modernissa rakennuksessa, jossa on pystysuorat puukalterit ja sisävalot.
Tutkimus ja taide Julkaistu:

Rahoitusta kestävyysmurroksen demokraattiseen toteutumiseen

Kolme Aalto-yliopiston hanketta on rahoitettujen joukossa. Nesslingin säätiön rahoituksella edistetään kestävyysmurroksen toteutumista demokraatiassa, EU:ssa ja luonnonsuojelualueilla.