News

A combination of wood fibres and spider silk could rival plastic

The unique material outperforms most of today’s synthetic and natural materials by providing high strength and stiffness, combined with increased toughness
Hämähäkkisilkki
Silk is a natural protein that can also be produced synthetically. It has good abilities and versatile possibilities. Photo: Eeva Suorlahti

Achieving strength and extensibility at the same time has so far been a great challenge in material engineering: increasing strength has meant losing extensibility and vice versa. Now Aalto University and VTT researchers have succeeded in overcoming this challenge, with inspiration from nature.

The researchers created a truly new bio-based material by gluing together wood cellulose fibres and the silk protein found in spider web threads. The result is a very firm and resilient material which could be used in the future as a possible replacement for plastic, as part of bio-based composites and in medical applications, surgical fibres, the textile industry and packaging.

According to Aalto University Professor Markus Linder, nature offers great ingredients for developing new materials, such as firm and easily available cellulose and tough and flexible silk as used in this research. The advantage with both of these materials is that, unlike plastic, they are biodegradable and do not damage nature the same way micro-plastics do.

‘Our researchers just need to be able to reproduce the natural properties’, adds Linder, who was also leading the research.

‘We used birch tree pulp, broke it down to cellulose nanofibrils and aligned them into a stiff scaffold. At the same time, we infiltrated the cellulosic network with a soft and energy dissipating spider silk adhesive matrix,’ says Research Scientist Pezhman Mohammadi from VTT.

Silk is a natural protein which is excreted by animals like silkworms and also found in spider web threads. The spider web silk used by Aalto University researchers, however, is not actually taken from spider webs but is instead produced by the researchers using bacteria with synthetic DNA.

‘Because we know the structure of the DNA, we can copy it and use this to manufacture silk protein molecules which are chemically similar to those found in spider web threads. The DNA has all this information contained in it’, Linder explains.

‘Our work illustrates the new and versatile possibilities for protein engineering. In the future, we could manufacture similar composites with slightly different building blocks and achieve a different set of characteristics for other applications. Currently, we are working on making new composite materials as implants, impact resistance objects and other products,” says Pezhman.

The research project is part of the work of the Centre of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials (HYBER). 

The research was published in Science Advances 13 September. Link to the article (Science Advances)

More information:

Markus Linder
Professor, Aalto University
+358 50 431 5525
[email protected] 

Pezhman Mohammadi
Research Scientist, VTT
+358 40 163 7835
[email protected]

Christopher Landowski
Research Team Leader, VTT
+358 40 482 0856
[email protected]

Read more

Kuva osoittaa, miten valmistetaan biosynteettistä hämähäkinseittiä suurjännitteen avulla

Spider silk is created by adding spider DNA to microbes

Researchers studying spiders have produced a synthetic biomaterial that can, in future, be used to make a multitude of products from clothes to car parts.

News
  • Published:
  • Updated:

Read more news

A handbook on the counter of a shop.
Campus, Research & Art Published:

Unite!’s Open Science and Innovation Management Handbook now available online and in print

The handbook is a practical guide for university researchers, R&I support services, and university managers.
A serene Japanese garden with a pond, rocks, and various trees, including vibrant red and green foliage.
Press releases Published:

What makes nature restorative? Aalto University researchers explore Finnish forests and Japanese gardens

Biodiversity is central to the restorative power of Finnish forests.
Room with multiple speakers mounted on metal frames in a circular arrangement. A stool and a grid platform are in the center.
Press releases Published:

New technology brings immersive audio to everyone’s pockets

A new type of sound recording technology allows recording of immersive soundscapes with ordinary microphones and an inexpensive accessory
A group of people walking past large windows in a modern building with vertical wooden slats and indoor lights.
Research & Art Published:

Funding for a democratic transition to sustainability

Three projects from Aalto University are among the recipients. The Nessling Foundation's grants aim to advance the implementation of sustainability transitions in the context of democracy, the EU, and nature conservation areas.