Uusi tilastollinen malli ennustaa tehokkaasti lääkeaineiden toksisuutta
Aalto-yliopiston, Karoliinisen Instituutin ja Suomen molekyylilääketieteen instituutin (FIMM) tutkimus sisälsi yli 1300 tunnettua lääkemolekyyliä, joista oli saatavilla laajoja mittausaineistoja.
”Tutkimuksessa on yhdistetty systemaattisella datalähtöisellä analyysillä solulinjoista mitattuja lääkemolekyylien toksisuusmittauksia ja geenien aktivaatiota kuvaavia geeniekspressiovasteita. Toksisuus voi ilmetä solujen kasvua hillitsevänä tai soluja tuhoavana vaikutuksena. Tutkimuksessa kehitetty menetelmä mahdollistaa toksisuuden ennustamisen uusille molekyyleille aiempia menetelmiä tarkemmin, koska siinä on käytetty kehittyneitä tilastollisia menetelmiä sekä aiempaa suurempia data-aineistoja”, kertoo Aalto-yliopistosta tohtoriksi väitellyt Juuso Parkkinen.
Tällä hetkellä toksisuutta testataan pitkälti eläinkokeilla. Uuden menetelmän avulla eläinkokeita voidaan tulevaisuudessa korvata solulinjakokeiden ja tilastollisen mallinnuksen yhdistelmällä. Tämä säästäisi huomattavasti myös lääkekehityksen kustannuksia.
”Uutta ennustusmenetelmää voidaan soveltaa tuotekehitysvaiheessa oleviin uusiin lääkemolekyyleihin ja muihin kemikaaleihin, ja seuloa pois mahdolliset toksiset molekyylit”, täsmentää Parkkinen.
Tilastollisen koneoppimisen ja tekoälymenetelmien kehitys on noussut erittäin merkittävään rooliin monilla sovellusalueilla lääketieteellisen tutkimuksen lisäksi.
“Juuso Parkkinen on malliesimerkki Aalto-yliopiston tekoälytutkimuksen ja tohtorintutkinnon hyödyllisyydestä: hän teki tutkimusryhmässäni väitöskirjan lääketieteellisestä sovelluksesta ja siirtyi sitten Reaktorille soveltamaan datatiedettä monien erilaisten yritysten tarpeisiin”, kehuu Parkkisen väitöskirjaohjaaja, professori Samuel Kaski.
Lääkeaineiden toksisuutta tutkivat Juuso Parkkinen ja Samuel Kaski Aalto-yliopistolta, Pekka Kohonen, Egon Willighagen, Rebecca Ceder, Roland Grafström Karoliinisesta Instituutista sekä Krister Wennerberg Suomen molekyylilääketieteen instituutista.
Lisätietoa:
Juuso Parkkinen
AI Designer and Senior Data Scientist
Reaktor
[email protected]
puh. 050 356 3916
Samuel Kaski
Professori
Aalto-yliopisto
[email protected]
puh. 050 305 8694
Julkaisu Nature Communications -lehdessä: A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury
- Julkaistu:
- Päivitetty: