AQP Seminar: Superconductivity in flat band semimetals
When
Where
Event language(s)
Abstract:
We study conditions for the emergence of the preformed Cooper pairs in materials hosting flat bands. As a particular example, we consider a semimetal, with a pair of three-band crossing points at which a flat band intersects with a Dirac cone, and focus on the s-wave intervalley pairing channel.
The nearly dispersionless nature of the flat band promotes local Cooper pair formation so that the system may be modelled as an array of superconducting grains.
Due to dispersive bands, Andreev scattering between the grains gives rise to the global phase-coherent superconductivity at low temperatures. We develop a mean-field theory to calculate transition temperature between the preformed Cooper pair state and the phase-coherent state for different interaction strengths in the Cooper channel. The transition temperature between semimetal and preformed Cooper pair phases is proportional to the interaction constant, the dependence of the transition temperature to the phase-coherent state on the interaction constant is weaker.
- Published:
- Updated: