News

New nanowire structure absorbs light efficiently

Dual-type nanowire arrays can be used in applications such as LEDs and solar cells.

Researchers at Aalto University have developed a new method to implement different types of nanowires side-by-side into a single array on a single substrate. The new technique makes it possible to use different semiconductor materials for the different types of nanowires.

'We have succeeded in combining nanowires grown by the VLS (vapor-liquid-solid) and SAE (selective-area epitaxy) techniques onto the same platform. The difference compared with studies conducted previously on the same topic is that in the dual-type array the different materials do not grow in the same nanowire, but rather as separate wires on the same substrate', says Docent Teppo Huhtio.

The research results were published in the Nano Letters journal on 5 February 2015.

Several applications

The new fabrication process has many phases. First, gold nanoparticles are spread on a substrate. Next, the substrate is coated with silicon oxide, into which small holes are then patterned using electron beam lithography. In the first step of growth, (SAE), nanowires grow from where the holes are located, after which the silicon oxide is removed. In the second phase different types of nanowires are grown with the help of the gold nanoparticles (VLS). The researchers used metalorganic vapor phase epitaxy reactor in which the starting materials decompose at a high temperature, forming semiconductor compounds on the substrate.

'In this way we managed to combine two growth methods into the same process', says doctoral candidate Joona-Pekko Kakko.

'We noticed in optical reflection measurements that light couples better to this kind of combination structure. For instance, a solar cell has less reflection and better absorption of light', Huhtio adds.

In addition to solar cells and LEDs, the researchers also see good applications in thermoelectric generators.  Further processing for component applications has already begun.

Nanowires are being intensely researched, because semiconductor components that are currently in use need to be made smaller and more cost-effective. The nanowires made out of semiconductor materials are typically 1-10 micrometres in length, with diameters of 5-100 nanometres.

The research was conducted at the Aalto University School of Electrical Engineering. The research received funding from Aalto University's Aalto Energy Efficiency Research Programme AEF.

Link to the article

Further information:

Docent Teppo Huhtio
[email protected]
+358 50 3619 692

Doctoral candidate Joona-Pekko Kakko
[email protected]
+358 50 3282 186

Nanowires produced by Aalto University researchers have also been studied at the Tampere University of Technology. The research has involved the development of optical measurement techniques making it possible to get more information about the characteristics of nanowires. The results that have been attained have broader significance for the study of non-linear optical phenomena in nanostructures.  The findings were published in the journal Nano Letters on 4 February 2015.

Link to the article

  • Published:
  • Updated:
Share
URL copied!

Read more news

Professori Maria Sammalkorpi
Research & Art Published:

Get to know us: Associate Professor Maria Sammalkorpi

Sammalkorpi received her doctorate from Helsinki University of Technology 2004. After her defence, she has worked as a researcher at the Universities of Princeton, Yale and Aalto.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2024

Computer scientists in ICML 2024
Photo: Tima Miroschnichenko, Pexels.
Press releases Published:

In low-hierarchy organisations, even key policy issues are discussed in Slack

In a recent study, Aalto University alumn Lauri Pietinalho, a visiting scholar at New York University's Stern School of Business, and Frank Martela, an assistant professor at Aalto University, investigated how low-hierarchy organisations deal with shared policies in confrontational situations and how authority functions within them.
bakteereja ohjataan magneettikentän avulla
Press releases, Research & Art Published:

Getting bacteria into line

Physicists use magnetic fields to manipulate bacterial behaviour