News

New surface makes oil contamination remove itself

Researchers of Aalto University have developed surfaces where oil transports itself to desired directions.

Oil drop moves away from the landing point to the direction set by geometrical patterning of the surface. Video: Ville Jokinen, Visa Noronen, Sebastian Röder.

Researchers' oleophobic surfaces are microtextured with radial arrays of undercut stripes. When oil drops fall on these surfaces, drops move away from the landing point to the direction set by asymmetric geometrical patterning of the surface. The surfaces open new avenues for power-free liquid transportation and oil contamination self-removal applications in analytical and fluidic devices.

– We developed surfaces that are able to move liquid oil droplets by surface tension forces. Droplets from anywhere within the pattern will spontaneously move to the center of the pattern, tells Postdoctoral Researcher Ville Jokinen.

- Although surface engineering facilitates effective liquid manipulation and enables water droplet self-transportation on synthetic surfaces, self-transportation of oil droplets posed a major challenge because of their low surfacetension, explains Postdoctoral Researcher Xuelin Tian.

Oil drop moves away from the landing point to the direction set by asymmetric geometrical patterning of the surface. Photo: Ville Jokinen / Aalto University

New surfaces are also able to move low surface tension liquids other than oil. They work for water, wine and even pure ethanol. Directional liquid transportation of water is also found in nature, for instance, in cactus needles and the shells of desert beetles. Researchers see a range of industrial applications.

– The droplets position themselves very accurately at the center of the pattern. This could be used to deposit arrays of functional materials. We envision the patterns being used the other way around as well, for instance, to transport unwanted stray droplets away from critical areas of devices, such as to prevent clogging of nozzles in inkjet printing, says Professor Robin Ras.

Contact details:

Postdoctoral Researcher Ville Jokinen
Aalto University (Finland)
[email protected]
Tel. +358 40 587 0425

Professor Robin Ras
Aalto University (Finland)
[email protected]
Tel. +358 50 432 6633
http://physics.aalto.fi/smw

Research article: Juan Li, Qi Hang Qin, Ali Shah, Robin H. A. Ras, Xuelin Tian, Ville Jokinen: Oil droplet self-transportation on oleophobic surfaces. Science Advances 2016. DOI 10.1126/sciadv.1600148

Link to the article (advances.sciencemag.org)

  • Published:
  • Updated:

Read more news

Group Picture
Cooperation Published:

DeployAI Partners Gather for Heart Beat Meeting in Helsinki

The European DeployAI project's partners gathered for the Heart Beat meeting hosted by Aalto University Executive Education in Helsinki.
Professori Maria Sammalkorpi
Research & Art Published:

Get to know us: Associate Professor Maria Sammalkorpi

Sammalkorpi received her doctorate from Helsinki University of Technology 2004. After her defence, she has worked as a researcher at the Universities of Princeton, Yale and Aalto.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2024

Computer scientists in ICML 2024
Photo: Tima Miroschnichenko, Pexels.
Press releases Published:

In low-hierarchy organisations, even key policy issues are discussed in Slack

In a recent study, Aalto University alumn Lauri Pietinalho, a visiting scholar at New York University's Stern School of Business, and Frank Martela, an assistant professor at Aalto University, investigated how low-hierarchy organisations deal with shared policies in confrontational situations and how authority functions within them.