Next generation fuel cells based on semiconductor-ionic principle
Heterostructure oxide material interfaces show extraordinary material properties such as great enhancement in the ionic conductivity, which is useful for fuel cells. We report a semiconductor-ionic
heterostructure La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Sm-Ca co-doped ceria (SCDC) material possessing unique properties for new generation fuel cells using semiconductor-ionic heterostructure composite materials.The LSCF-SCDC system contains both ionic and electronic conductivities, above 0.1 S/cm, but used as the electrolyte for the fuel cell it has displayed promising performance in terms of OCV (above 1.0 V) and enhanced power density (ca. 1000 mW/cm2 at 550 °C). The work was done by an international researcher group with participation of Prof. Peter Lund from Aalto University and Hubei University. The results were recently published in Nanoenergy 37(2017)195-202. http://dx.doi.org/10.1016/j.nanoen.2017.05.003
Read more news
Training available in AI, research data management, research ethics + more – register now!
New topics included! Registrations for spring 2026 are open.
New Innovation Postdoc programme launching this spring in Aalto
Innovation Postdoc launching this spring for AI researchers eager to turn cutting-edge research into real-world impact.
Expansive frontiers: tracing wilderness
Expansive Frontiers: Tracing Wilderness is a research project developed over a period of three months by doctoral researcher Ana Ribeiro, during her time as a Visiting Researcher in the Empirica Research Group at Aalto University