News

Spectral library reveals how boreal trees reflect solar radiation

An internationally significant spectral library helps in the interpretation of satellite images and in the assessment of the effects of forests on climate.

Researchers measured a total of more than 1 000 spectra from needle and leaf samples from arboretums and botanical gardens in the Helsinki region. Photo: Aarne Hovi

The number of Earth Observation satellites monitoring the environment is growing fast. New satellites are capable of distinguishing increasingly narrow bands of wavelengths and making increasingly frequent observations of forests globally. This opens up new opportunities in monitoring the state of forests and any changes in it.

However, measurements on the capability of different types of trees or plants to reflect solar radiation are required from the Earth’s surface as reference material to support the interpretations. Reference material can partly be replaced by physical models for which information on the optical properties of the basic components, leaves and needles, is needed. The researchers of Aalto University’s spectral laboratory have now compiled an internationally significant spectral library on the optical properties of the tree species in the boreal (northern) coniferous forests.

‘We measured a total of more than 1 000 spectra from needle and leaf samples from arboretums and botanical gardens in the Helsinki region. We managed to get a total of 25 tree species to the spectral library. Many commercially important species from both North America and Eurasia are included, such as the Siberian larch and the black spruce and the white spruce, which are both common in Canada’, explains postdoctoral researcher Aarne Hovi.

Trees that reflect more have cooling effects

The researchers showed that the spectral differences between different tree species are the greatest at the end of the shortwave-infrared region, the range of wavelengths that are longer than those visible to the human eye. The result benefits studies aimed at identifying different tree species from remote sensing material, as some of the current satellites are already capable of measuring the end of the shortwave-infrared region.

In addition to the interpretation of satellite material, the measured spectra can be used in the assessment of effects of forests on climate. For example, very little material has until now been available for modelling the forest albedo. Albedo means proportion of solar radiation reflected by the Earth’s surface back to space. The new spectral library makes it possible to examine the role of different tree species in the mitigation or acceleration of climate change. What this means in practice is that trees that are the most reflective could be favoured to increase the cooling effects on climate.

‘In the spectral laboratory, we are currently developing methods for increasing the accuracy of spectral measurements and speeding them up. This enables, for example, the monitoring the effects of different environmental factors on plants’ growth or the health of plants from space’, says Aarne Hovi.

‘The entire material can also be accessed openly, which increases the possibilities to use it in the development of interpretation methods for satellite images.’

Further information:

Aarne Hovi, Postdoctoral Researcher,
tel. +358 50 406 4147
[email protected]

Miina Rautainen, Assistant Professor, Head of the research group
[email protected] 

The material is available in the international SPECCHIO database (www.specchio.ch).

A scientific article has been published on the topic: https://www.silvafennica.fi/article/7753

  • Published:
  • Updated:

Read more news

ınterns
Research & Art, University Published:

Pengxin Wang: The internship was an adventure filled with incredible research, unforgettable experiences, and lifelong friendships.

Pengxin Wang’s AScI internship advanced AI research, fostered global friendships, and inspired his journey toward trustworthy AI solutions.
Radiokatu20_purkutyömaa_Pasila_Laura_Berger
Research & Art Published:

Major grant from the Kone Foundation for modern architecture research - Laura Berger's project equates building loss with biodiversity loss

Aalto University postdoctoral researcher Laura Berger and her team have been awarded a 541 400 euro grant from the Kone Foundation to study the effects of building loss on society and the environment.
An artistic rendering of two chips on a circuit board, one is blue and the other is orange and light is emitting from their surf
Press releases Published:

Researchers aim to correct quantum errors at super-cold temperatures instead of room temperature

One of the major challenges in the development of quantum computers is that the quantum bits, or qubits, are too imprecise. More efficient quantum error correction is therefore needed to make quantum computers more widely available in the future. Professor Mikko Möttönen has proposed a novel solution for quantum error correction and has received a three-year grant from the Jane and Aatos Erkko Foundation to develop it.
Three happy students. Photo: Unto Rautio
Research & Art Published:

14 projects selected for seed funding to boost collaboration between Aalto, KU Leuven, and University of Helsinki

The funded projects lay the groundwork for future joint research endeavors, reinforcing the strategic partnership’s goal to fostering impactful and interdisciplinary collaboration.