Uutiset

Luonnosta oppija

Akatemiaprofessori Olli Ikkala kirii laboratoriossaan kiinni evoluution etumatkaa materiaalien valmistamisessa. Energiapihille yhteiskunnalle urakan tulokset voivat olla ratkaisevia.
Olli Ikkala
Olli Ikkala johtaa Suomen Akatemian biosynteettisten materiaalien huippuyksikköä ja kehittää Euroopan tutkimusneuvosto ERC:n myöntämällä miljoonarahoituksella uusia toiminnallisia materiaaleja. Kuva: Terhi Korhonen

Vedyn, hiilen ja piin kaltaiset alkuaineet ovat fyysikoille tuttuja tutkimuskohteita, joiden ymmärtämisestä on syntynyt valtava määrä tieteellisiä oivalluksia ja teknologisia läpimurtoja. Elollisten lajien materiaalit ovat heille vieraampia.

”Hieman yksinkertaistaen voisi sanoa, että ne ovat fyysikoille monimutkaisia: niissä on paljon toistensa kanssa vuorovaikuttavia osia, ne reagoivat ärsykkeisiin, ja niillä on monia jopa ristiriitaisia toimintoja. Viime aikoina on kuitenkin alettu ymmärtää, että elollinen ympäristömme on aarreaitta myös fyysikoille ja materiaalitieteilijöille”, kertoo Olli Ikkala.

Pitkän uran teollisuudessa ja tiedemaailmassa tehnyt akatemiaprofessori tietää, mistä puhuu: hän johtaa Suomen Akatemian biosynteettisten materiaalien huippuyksikköä ja kehittää Euroopan tutkimusneuvosto ERC:n myöntämällä miljoonarahoituksella uusia toiminnallisia materiaaleja. Niille löytyy aarreaitasta inspiroivia esikuvia, jotka ovat kehittyneet miljoonien ja miljardien vuosien aikana evoluution seurauksena.

”Luonnossa on silkin kaltaisia materiaaleja, jotka ovat yhtä aikaa lujia, sitkeitä ja keveitä. Sieltä löytyy myös likaa hylkiviä pintoja, itseään korjaavia materiaaleja, niveliä, joiden kitka on hyvin pieni, hienoja värien syntymekanismeja ja eri lailla liikkuvia organismeja. Luonnonmateriaalien rakentumisessa ja säätelyssä muuttujien määrä on tähtitieteellinen, joten niiden täydellinen ymmärtäminen on mahdotonta.  Mutta entä jos voisimmekin poimia vain rusinat pullasta: ymmärtää ja valita tärkeimmät mekanismit ja kehittää niiden pohjalta vielä parempia materiaaleja?”

Poikkitieteellistä, luonnollisesti

Olli Ikkalan kuvaamaa, luonnon materiaalinmuodostusta jäljittelevää tieteenalaa kutsutaan biomimetiikaksi. Yksi sen tärkeistä työkaluista on biologisille materiaaleille tyypillinen itsejärjestäytyminen, jossa rakennekomponenttien väliin koodattu vuorovaikutus saa ne muodostamaan tietynlaisia nanorakenteita.  Luonnossa tällä tavoin

Hyvä soveltava tutkimus vaatii luonnonlakien syvää ymmärtämistä.

Olli Ikkala

syntyvät esimerkiksi simpukan helmiäinen, ravun kuori ja Alzheimerin taudissa aivoihin muodostuva amyloidiplakki. Kaikkien niiden mekaaniset ominaisuudet ovat lujuudeltaan metallien luokkaa.

”Me haluamme tehdä biomimeettisiä materiaaleja, joissa yhdistyvät lujuus, sitkeys ja keveys, mutta myös kehittää materiaaleja, joilla on täysin uusia ominaisuuksia”, Ikkala kertoo ja korostaa, että tiedemaailmassa pinnalla oleva poikkitieteellisyys on biomimetiikalle luontaista – rajanveto biokemian, kemian ja fysiikan välillä on tarpeetonta, jopa mahdotonta.

Turhia rajoja pitäisi välttää muuallakin.

”En usko tarkkaan jakoon perustutkimuksen ja soveltavan tutkimuksen välillä. Hyvä soveltava tutkimus vaatii luonnonlakien syvää ymmärtämistä. Perustutkimus ja kaupallisuus eivät sulje toisiaan pois. Kemian Nobelilla palkittu teoreettinen fyysikko Alan Heeger kaupallistaa aurinkokennoja, ja toinen teoreettinen fyysikko Ludvik Leibler uudistaa kirurgisia menetelmiä. Kummankin kanssa minulla on ollut ilo olla tekemisissä. Mekin haluamme sekä julkaista tutkimuksemme parhaissa mahdollisissa lehdissä että käynnistää uutta yritystoimintaa”, Ikkala painottaa.

Teollisuustuotantoon biomimeettisiä materiaaleja saadaan vielä odottaa, mutta lupaavia ehdokkaita on jo olemassa. Yksi niistä on Ikkalan tutkimusryhmän kehittämä helmiäistä muistuttava materiaali, jonka valmistusprosessi perustuu pitkälti itsejärjestäytymiseen. Se koostuu nanometrin paksuisen polymeerikerroksen peittämistä, nanometrin paksuisista savilevyistä, jotka muodostavat kerrostuneen, äärimmäisen lujan rakenteen.

”Selvitämme materiaalin uusia sovellusmahdollisuuksia yhteistyössä Taiteiden ja suunnittelun korkeakoulun kanssa.”

Kevyttä ja uusiutuvaa

Mihin uusia materiaaleja sitten tarvitaan? Ainakin entistä energiatehokkaamman yhteiskunnan rakentamiseen: keveydestä olisi hyötyä muun muassa liikenteessä. Esimerkiksi tavallisen, 3000 tuntia vuodessa lentävän matkustajakoneen keventäminen 100 kilogrammalla säästäisi 9 kerosiinitonnia ja vähentäisi hiilidioksidipäästöjä melkein 29 tonnilla vuodessa.

Kehitystyöhön ajaa myös tarve korvata materiaalien valmistuksessa uusiutumattomat luonnonvarat uusiutuvilla. Suomessa riittää metsää, mutta perusmänty ei sellaisenaan kelpaa tulevaisuuden high-tech-materiaaliksi.

”Tämä esimerkiksi ei ole kovin vahva”, Ikkala sanoo pöytää kopauttaen.

”Jos sen sijaan pilkon sen yhä pienemmäksi ja pienemmäksi, saan lopulta viiden nanometrin paksuisia selluloosakuituja, joilla on aivan huikeita ominaisuuksia, ja voin alkaa koota niistä uudenlaista materiaalia. Mutta aivan uudenlaisien ominaisuuksien luomiseen tarvitaan syvää ymmärrystä itsejärjestäytymisestä ja molekyylien välisistä vuorovaikutuksista.”

Nanoselluloosalla uskotaan olevan runsaasti sovelluksia esimerkiksi metsä-, huonekalu-, rakennus- ja lääketeollisuudessa. Aalto-yliopistossa nanoselluloosaa ja sen sovelluksia tutkitaankin ahkerasti, myös Ikkalan tutkimusryhmässä.

”Paperiteollisuudelle täytyy löytää vaihtoehtoja. Meillä on metsissämme runsaasti uusiutuvaa luonnonmateriaalia – miksi emme kehittäisi siitä jotain hienoa ja aivan uutta?”

Haastattelu on julkaistu ensimmäisen kerran Aalto University Magazinen numerossa 13, toukokuussa 2015.

Lue myös: Olli Ikkala nimitetty Aalto-professoriksi

  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

Uusi aiempaa herkempi infrapunasensori tuo hyötyjä moneen eri teknologiaan. Kuva: Aalto-yliopisto / Xiaolong Liu
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkijat kehittivät infrapunasensoreista aiempaa herkempiä

Uuden teknologian uskotaan olevan suoraan integroitavissa esimerkiksi itseohjautuviin autoihin.
Ryhmä ihmisiä poseeraa amfiteatterin suurilla kivirapuksilla. Rakennuksen takana on suuret ikkunat ja vihreä katto.
Tutkimus ja taide Julkaistu:

Aallon vuosi 2024: Avaruustutkimusta uusilla taajuuksilla, rakkauden aivokuvia, kaupunkivihreää ja paljon muuta

Aalto-yliopiston vuosi 2024 piti sisällään innovaatioita, inspiraatiota ja roppakaupalla radikaalia luovuutta – tässä katsaus siihen.
Radiokatu20_purkutyömaa_Pasila_Laura_Berger
Tutkimus ja taide Julkaistu:

Modernin arkkitehtuurin tutkimukseen merkittävä apuraha Koneen säätiöltä – Laura Bergerin hanke rinnastaa rakennuskadon luontokatoon

Aalto-yliopiston postdoc-tutkija Laura Berger ja hänen työryhmänsä ovat saaneet Koneen säätiön 541 400 euron apurahan hankkeen tutkimiseen, joka tarkastelee rakennuskadon vaikutuksia yhteiskunnalle ja ympäristölle.
Three happy students. Photo: Unto Rautio
Tutkimus ja taide Julkaistu:

Siemenrahoitusta Aallon, KU Leuvenin ja Helsingin yliopiston tutkimusyhteistyön vahvistamiseen

Rahoitetut hankkeet tukevat yliopistojen strategisen kumppanuuden tavoitetta edistää vaikuttavaa ja monitieteistä yhteistyötä.