Uutiset

Tutkijoille läpimurto kubittien energiahäviöiden mittaamisessa – mahdollistaa tulevaisuuden tehokkaammat kvanttitietokoneet

Aalto-yliopiston tutkijat osoittivat, miten kubittien energiahäviöt voidaan selittää yksinkertaisella kokeella. Löytö auttaa fyysikoita kehittämään tehokkaampia kubitteja esimerkiksi kvanttitietokoneita varten.
A figure from a paper in greyscale shows Josephson junctions and thermal bolometers.
Pyyhkäisyelektronimikroskooppikuvassa näkyy ryhmän koejärjestely, jossa on yksi Josephson-liitos. Kuva: Pico-tutkimusryhmä/Aalto-yliopisto

Suprajohtavat kvanttibitit – eli kubitit – ovat esimerkiksi kvanttitietokoneiden ja äärimmäisen herkkien mittalaitteiden rakennuspalikoita. Nimensä mukaisesti suprajohteet kuljettavat sähkövirtaa erittäin tehokkaasti. Toisin kuin puolijohtimissa, suprajohtimissa sähkövirrasta katoaa vain äärimmäisen vähän energiaa matkan aikana.

Kubittien suprajohtavuuden mahdollistaa niin sanottu Josephsonin ilmiö, jossa kaksi toisiaan lähellä olevaa suprajohdinta synnyttää sähkövirran niitä erottavan esteen läpi. Aalto-yliopiston tutkijat ovat nyt ensimmäistä kertaa onnistuneet mittaamaan kubittien Josephson-liitoksissa tapahtuvaa energian haihtumista säteilynä.

Kvantti-ilmiöitä ja -laitteita tutkivan Aalto-yliopiston Pico-tutkimusryhmän tutkijatohtori Bayan Karimi osoitti, että aiemmin selittämättömän kubittien energiakadon syy löytyy juuri lämpösäteilystä. Tutkimus julkaistiin Nature Nanotechnology -lehdessä elokuun 22. päivä.

”Huolimatta nopeasta edistymisestä kubittien kehittämisessä, aiemmin on ratkaisematta jäänyt tärkeä kysymys: miten ja missä lämpöhäviö tapahtuu?”, Karimi toteaa.

Karimin mukaan kubitit ovat erittäin herkkiä häiriöille, jolloin niistä tulee herkästi epävakaita. Joskus muutos selittyy ulkoisella taustakohinalla, mutta Josephson-liitoksissa tapahtuvaa energian haihtumista säteilynä ja sen aiheuttamaan lämpenemistä ei ole hänen mukaansa aiemmin tutkittu kokeellisesti.

”Olemme tässä työssä mitanneet miten energia siirtyy Josephson-liitoksesta ympäristöön. Tutkimus perustuu Pico-ryhmän osaamiseen säteilevän energian mittaamisessa herkin lämpömittarein”, kertoo Aalto-yliopiston professori ja Pico-ryhmän johtaja Jukka Pekola.

Energiahäviöt sinänsä tunnetaan entuudestaan. Fyysikot ovat tehneet kokeita, joissa sadat Josephson-liitokset on sijoitettu jonossa samaan piiriin. Yksikin liitos riitti epävakauttamaan sitä seuraavat liitokset.

Alun perin Karimi ja Pekola tekivät kokeita useilla yhteen kytketyillä liitoksilla, kunnes he päättivät yksinkertaistaa koeasetelmaansa. Lopulta kokeissa havainnoitiin vain yhtä Josephson-liitosta, jonka jännitettä sitten hienosäädettiin. Karimi ja Pekola sijoittivat äärimmäisen tarkan lämpömittarin liitoksen viereen ja onnistuivat mittaamaan liitoksesta lähtevän erittäin heikon lämpösäteilyn eri taajuuksilla aina sataan gigahertziin saakka.

Fyysikot jatkavat tehokkaampien kubittien kehittämistä osana kilpajuoksua, jonka tarkoitus on parantaa lähitulevaisuuden kvanttitietokoneiden teknologiaa. Karimin ja Pekolan tuottama uusi tieto antaa tutkijoille ja insinööreille keinon ymmärtää kubittien häviöitä entistä paremmin. Kvanttitietokoneissa kauemmin koherentteina säilyvät kubitit mahdollistavat aiempaa suuremman määrän laskutoimituksia, johtaen lopulta niin monimutkaisiin laskutoimituksiin ettei niitä voi klassisilla tietokoneilla suorittaa.

Pico-ryhmän teoreettinen työ on tehty yhteistyössä Madridin yliopiston kanssa ja kokeellinen osuus InstituteQ Chair of Excellence -professori Charles Marcusin kanssa. Kokeessa käytettyjen laitteiden valmistamisessa käytettiin Suomen kansallista mikro- ja nanoteknologian tutkimusinfrastruktuuria, OtaNanoa. Lisäksi tutkimuksen mahdollisti Suomen Akatemia Quantum Technology Finland -huippuyksikön ja THEPOW-konsortiumin kautta.

Artikkeli:

Karimi, B., Steffensen, G.O., Higginbotham, A.P. et al. Bolometric detection of Josephson radiation. Nat. Nanotechnol. (2024). https://www.nature.com/articles/s41565-024-01770-7

Lue lisää tutkimuksesta:

Samples

Pico - Quantum Phenomena and Devices

We investigate mesoscopic physics and its sensor applications. The main focus is on charge transport and thermal properties of metallic, superconducting and hybrid nanostructures.

Department of Applied Physics
Aalto graduate Bayan Karimi received an award from the European Center for Advanced Studies in Thermodynamics. Photo: Bayan Karimi/Aalto University

Bayan Karimille myönnettiin Ilya Prigogine -palkinto

Aalto-yliopistosta väitellyt Karimi palkittiin vaikuttavasta väitöstutkimuksesta.

Uutiset
  • Julkaistu:
  • Päivitetty:

Lue lisää uutisia

An artistic rendering of two chips on a circuit board, one is blue and the other is orange and light is emitting from their surf
Mediatiedotteet Julkaistu:

Tutkijoiden tavoitteena on korjata kvanttivirheet huoneenlämmön sijaan superkylmässä lämpötilassa

Kvanttitietokoneiden kehityksessä yksi suurimmista haasteista on se, että kvanttibitit eli kubitit ovat liian epätarkkoja. Tarvitaan siis tehokkaampaa kvanttivirheen korjausta, jotta kvanttitietokoneita voidaan tulevaisuudessa ottaa laajemmin käyttöön. Professori Mikko Möttösellä on kvanttikorjaukseen uudenlainen ratkaisuehdotus, ja sen kehittämiseksi hän on saanut kolmevuotisen apurahan Jane ja Aatos Erkon säätiöltä.
Kaksi henkilöä, toinen yllään viininpunainen paita sisätiloissa, toinen valkoinen paita ulkona.
Nimitykset, Tutkimus ja taide Julkaistu:

Elektroniikan ja nanotekniikan laitoksella aloitti kaksi uutta apulaisprofessoria

Sähkötekniikan korkeakoulun Elektroniikan ja nanotekniikan laitos sai syksyllä kaksi uutta apulaisprofessoria. Lue Kim Kwantaen ja Paul Verrinderin ajatuksia aloittaessaan Aalto-yliopistolla.
Henkilö työvaatteissa ja kypärässä työskentelee luolassa kiviseinällä työkaluilla.
Tutkimus ja taide Julkaistu:

Uusi keksintö kallion jännitystilan seurantaan – Voi mullistaa kaivosten turvallisuuden ja louhintatehokkuuden

Menetelmän avulla on mahdollista seurata kallion jännitystilaa reaaliaikaisesti. Sen avulla voidaan ehkäistä ja ennakoida sortumia sekä tehostaa louhintaa.
Kuusi maaperänäytettä, joissa ituja eri kehitysvaiheissa eri maatyypeissä.
Yhteistyö, Tutkimus ja taide, Opinnot Julkaistu:

Rakennusjätepuulle uusi elämä kasvualustana

Suomessa rakennusjätepuu päätyy lähes kokonaan polttoon, vaikka sillä voisi olla merkittävä rooli ekologisten kasvualustojen kehittämisessä. Uudet tutkimukset osoittavat, että höyrykäsitelty jätepuu voi korvata kasvualustana turpeen ja se tarjoaa lupaavia tuloksia kasvien itävyydessä ja juurien kasvussa.