News

Breakthrough in lignin research: spherical particles multiply enzyme efficiency

Lignin, a pulp industry by-product, could replace fossil materials.
Biocatalysts (pictured at the bottom of the vial), supported by spherical lignin particles and embedded in natural polymer matrix, open new avenues to green synthesis reactions in the presence of water. Photo: Valeria Azovskaya

Researchers at Aalto University and York University have succeeded in creating a water-repellent composite structure out of lignin particles, in which the enzymes or biocatalysts can be separated from surrounding water. The breakthrough was accomplished when the researchers discovered that, by regulating the surface charge of single lignin particles, enzymes can be made to adhere to the surface of particles. As material supporting the structure, they utilised a natural polymer isolated from seaweed.

The starting point for the research was the need to utilise lignin, a pulp industry by-product, for new, large-scale purposes. The researchers were surprised to discover that, when introduced, the lignin particles multiplied enzyme efficiency and enabled enzyme recycling in a synthetic reaction that would not otherwise occur in water.

“The beauty of this method lies in its simplicity and scalability. We are already able to manufacture lignin particles in batches of several kilogrammes. Of course, we hope that this will become a sustainable option for the enzyme industry to replace fossil materials in technical applications”, says Postdoctoral Researcher Mika Sipponen.

Lignin not only multiplies enzyme efficiency, it also shows good results in comparison to those substances currently on the market, created from unsustainable sources. “The commercial enzyme we use as reference is attached to the surface of synthetic acrylic resin produced from fossil raw materials. In comparison, this new biocatalyst was at best twice as active”, Sipponen adds.

In the reaction, alcohol and organic acid created in biofuel production produced a water-insoluble ester with a pineapple scent. The process opens up new possibilities for the production of bio-based polyesters, as well.

“We are pleased that the years of investing in the lignin particle research are beginning to produce significant results. We envision several possible uses for spherical particles in green chemistry processes and the development of new materials”, says research leader Professor Monika Österberg.

The research was funded by the Academy of Finland.

The article “Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media” was published today in Nature Communications, DOI 10.1038/s41467-018-04715-6, https://www.nature.com/articles/s41467-018-04715-6

For more information:

Dr. Mika Sipponen
[email protected]
tel +358503013978                    

Prof. Monika Österberg          
[email protected]
tel +358505497218

  • Published:
  • Updated:

Read more news

A serene Japanese garden with a pond, rocks, and various trees, including vibrant red and green foliage.
Press releases Published:

What makes nature restorative? Aalto University researchers explore Finnish forests and Japanese gardens

Biodiversity is central to the restorative power of Finnish forests.
Room with multiple speakers mounted on metal frames in a circular arrangement. A stool and a grid platform are in the center.
Press releases Published:

New technology brings immersive audio to everyone’s pockets

A new type of sound recording technology allows recording of immersive soundscapes with ordinary microphones and an inexpensive accessory
A group of people walking past large windows in a modern building with vertical wooden slats and indoor lights.
Research & Art Published:

Funding for a democratic transition to sustainability

Three projects from Aalto University are among the recipients. The Nessling Foundation's grants aim to advance the implementation of sustainability transitions in the context of democracy, the EU, and nature conservation areas.
Siavash Khajavi wearing glasses and a light blue shirt, standing indoors with a window in the background.
Research & Art Published:

A community where personal connections and career paths intertwine

Assistant professor of operations management Siavash Khajavi explains how studying Industrial Engineering and Management helps students develop hard skills through rigorous studies and soft skills through countless interactions and collaboration.