News

Diamond-like carbon is formed differently to what was believed – machine learning enables development of new model

Customised carbon surfaces can be used in areas such as medical science and water purification.
Trajectories followed by incident and knockon atoms during energetic deposition of a tetrahedral amorphous carbon thin film.

Researchers at Aalto University and Cambridge University have made a significant breakthrough in computational science by combining atomic-level modelling and machine learning. For the first time, the method has been used to realistically model how an amorphous material is formed at the atomic level: that is, a material that does not have a regular crystalline structure. The approach is expected to have impact on the research of many other materials.

‘The secret of our success is machine learning, through which we can model the behaviour of thousands of atoms over long periods of time. In this way, we have obtained a more accurate model’, explains Postdoctoral Researcher Miguel Caro.

The team’s simulations reveal that diamond-like carbon film is formed at the atomic level in a different way than was thought. The prevailing understanding over the last 30 years of the formation mechanism for amorphous carbon film has been based on assumptions and indirect experimental results. Neither a good nor even an adequate atomic-level model has been available up to now. The new method has now overturned the earlier qualitative models and provided a precise atomic-level picture of the formation mechanism.

‘Earlier, amorphous carbon films were thought to form when atoms are packed together in a small area. We have demonstrated that mechanical shock waves can cause the formation of diamond-like atoms further away from the point at which the impacting atoms hit the target, reports Caro, who performed the simulations on CSC (IT Center for science) supercomputers, modelling the deposition of tens of thousands of atoms.

Results open up significant new avenues for research

There are countless different uses for amorphous carbon. It is used as a coating in many mechanical applications, such as car motors, for example. In addition, the material can also be used for medical purposes and in various energy-related, biological and environmental applications.

‘For us, the most important application is biosensors. We have used very thin amorphous carbon coatings for identifying different biomolecules. In these applications, it is especially important to know the films’ electrical, chemical and electrochemical properties and to be able to customise the material for a particular application’, explains Professor Tomi Laurila.

Dr Volker Deringer, a Leverhulme Early Career Fellow, is particularly excited about using these methods for amorphous materials.

‘Teaming up has been a great success’, conclude Deringer and Caro, who are continuing the collaboration between their institutions through ongoing visits. The team expect that their approach will help many others in experimental materials research, because it can give information about materials with a level of precision close to that of quantum mechanical methods, but simultaneously can make use of thousands of atoms and long simulation times. Both of these are extremely important for a realistic picture of the processes in experiments.

‘I’m especially excited about the kinds of opportunities this method offers for further research. This atomic-level model produces verifiably correct results that correspond exceptionally well to the experimental results, revealing also for the first time the atomic-level phenomena behind the results. Using the model, we can, for example, predict what kind of carbon surface would be best for measuring neurotransmitters dopamine and serotonin’, says Laurila.

The research has been published in Physical Review Letters:

Miguel A. Caro, Volker L. Deringer, Jari Koskinen, Tomi Laurila, and Gábor Csányi
Growth Mechanism and Origin of High sp3 Content in Tetrahedral Amorphous Carbon
Phys. Rev. Lett. 120, 166101 (2018)

Further information:

Miguel Caro
Postdoctoral Researcher
Aalto University
[email protected]
+ 358504079988

Tomi Laurila
Professor
Aalto University
[email protected]
+358503414375

Dr Volker Deringer
Leverhulme Early Career Fellow
University of Cambridge
[email protected]
+44 7494 989967

  • Published:
  • Updated:

Read more news

A serene Japanese garden with a pond, rocks, and various trees, including vibrant red and green foliage.
Press releases Published:

What makes nature restorative? Aalto University researchers explore Finnish forests and Japanese gardens

Biodiversity is central to the restorative power of Finnish forests.
Room with multiple speakers mounted on metal frames in a circular arrangement. A stool and a grid platform are in the center.
Press releases Published:

New technology brings immersive audio to everyone’s pockets

A new type of sound recording technology allows recording of immersive soundscapes with ordinary microphones and an inexpensive accessory
Artificial intelligence models have been used in the design of the Natal Mind app and especially the cartoon-like digital therapists.
Press releases Published:

Digital doula helps mothers-to-be face the fear of childbirth

Aalto University introduces 12 new world-changing innovations at Slush. On of them is digital doula Natal Mind, a mobile app designed to support the emotional and mental journey undergone by mothers-to-be.
Two people outdoors with one holding a yellow frisbee-like object. One wears a white coat, the other a blue shirt.
Press releases Published:

'We cannot solve today’s complex challenges with traditional approaches' –– dozens of Finnish organisations support Aalto's radical creativity initiative

Aalto University launches a free online course to make the basics of radical creativity accessible to all