News

Light detector with record-high sensitivity to revolutionize imaging

Researchers at Aalto University reach near-unity response ranging from ultraviolet to infrared.

Structure and performance of the novel photodetector

The research team led by Professor Hele Savin has developed a new light detector that can capture more than 96 percent of the photons covering visible, ultraviolet and infrared wavelengths.

“Present-day light detectors suffer from severe reflection losses as currently used antireflection coatings are limited to specific wavelengths and a fixed angle of incidence. Our detector captures light without such limitations by taking advantage of a nanostructured surface. Low incident angle is useful especially in scintillating x-ray sensors”, Savin explains.

Our detector does not need any dopants to collect light – instead we use an inversion layer generated by atomic layer deposited thin film.

“We also addressed electrical losses present in traditional sensors that utilize semiconductor pn-junctions for light collection. Our detector does not need any dopants to collect light – instead we use an inversion layer generated by atomic layer deposited thin film.”

The new concept for light detection kindled from the team’s earlier research on nanostructured solar cells. Indeed, the nanostructure used in the light detector is similar to that used by the team a couple of years ago in their record-high efficiency black silicon solar cells.

The team has filed a patent application for the new light detector. The prototype detectors are currently being tested in imaging applications related to medicine and safety. The team is also continuously seeking new applications for their invention, especially among the ultraviolet and infrared ranges that would benefit from the superior spectral response.

The research results were published 14.11.2016 in Nature Photonics scientific journal.
Link to the article

Further information:

Professor Hele Savin
Tel. +358 50 541 0156
[email protected]

Senior Scientist Mikko Juntunen
Tel. +358 40 8609 663
[email protected]

Read also: Efficiency record for black silicon solar cells jumps to 22.1%

  • Published:
  • Updated:
Share
URL copied!

Read more news

Aerial view of modern urban buildings with green rooftops and solar panels in a dense cityscape by the water.
Cooperation, Research & Art Published:

Aalto University secures significant funding for critical green transition research

Granted by the Research Council of Finland, the funding will accelerate research in energy systems, microelectronics and sustainable cities
A hand in a blue glove holding a spherical glass flask with a cork, containing a brown, grainy substance.
Research & Art Published:

A Flexible Biorefinery using Machine Learning

Biorefineries convert biomass, such as wood, annual plants or agricultural into products and energy. Research teams in Finland and Germany aim to maximize such product output for a more holistic valorization of our natural resources. The development of these new processes is often slow because they require optimization of many factors. The integration of artificial intelligence (AI) can help us accelerate such a development drastically.
Blue-coral gradient background with a podium floating over balloons and above it a white cloud dispersing a ray of light to its spectral components.
Research & Art Published:

The winner of Aalto University's Open Science Award 2024 is AALTOLAB Virtual Laboratories

The winner of Aalto University's Open Science Award winner for 2024 has been chosen.
Close-up of Helsinki Central Station with two stone statues holding spherical lamps and the sign 'RAUTA'.
Press releases Published:

Aalto University launches fundraising campaign with aim of raising €30 million as university celebrates 15th anniversary

With the donations, Aalto will be able to respond better to the growing needs of high-quality education, research and innovation