News

Sustainable optical fibres developed from methylcellulose

Researchers from Tampere University and Aalto University have developed optical fibres from methylcellulose, a commonly used cellulose derivative. The finding opens new avenues to short-distance optical fibres using sustainable and environmentally benign fibre processing. The finding was published in the journal Small.
Luonnoskuva valokuiduista. Kuva: Ville Hynninen and Nonappa.
Schematic illustration of a light coupled optical fibre and photographs of methylcellulose-based optical fibers under ambient light and UV light. Image: Ville Hynninen and Nonappa

The state-of-the-art silica glass optical fibres can carry light signals over tens of kilometres with very low optical loss and provide high-capacity communication networks. However, their brittleness, low stretchability and energy intensiveness make them less suitable for local short-range applications and devices such as automotive, digital home appliances, fabrics, laser surgery, endoscopy and implantable devices based on optical fibres. The sustainable solution to these may be found within biopolymer-based optical fibres.

'The wide availability of cellulosic raw materials provides an excellent opportunity to unravel the hidden potential of renewable materials for practical applications through sustainable fibre processing routes,' says Associate Professor Nonappa, whose research team at Tampere University is developing biopolymer-based optical fibres for short-distance applications.

Conventionally, the polymer or plastic optical fibres are used for short-distance applications, but their processing may involve relatively high temperatures and the use of hazardous chemical treatment.

'By using methylcellulose hydrogel, we have shown that optical fibres can be produced at room temperature using a simple extrusion method without any chemical crosslinkers. The resulting fibres are highly transparent, mechanically robust, flexible and show low optical loss,' Nonappa states.

Biopolymer-based optical fibres suitable for multifunctional sensors

In addition to pure light signal transmission, the methylcellulose optical fibres can be feasibly modified and functionalized.

'The hydrogel matrix allows straightforward addition of various molecules and nanoparticles without compromising the mechanical properties or light propagation abilities of the fibres making them suitable for multifunctional sensors', says doctoral researcher Ville Hynninen, the first author of the paper.

For example, incorporating an extremely low mass fraction of protein-coated gold nanoclusters produced luminescent optical fibres, and acted also as a fibre-based toxic metal ion sensor.

Overall, the presented results and the abundance of cellulosic derivatives and raw materials encourage further research and optimization of cellulose-derived optical components and devices.

The work results from a collaboration between the research groups of Professor Nonappa at Tampere University and Professor Olli Ikkala and Professor Zhipei Sun at Aalto University. The research was performed under the framework of the Academy of Finland´s Photonics Research and Innovation (PREIN), FinnCEREs Materials Cluster flagships and HYBER Centre of Excellence.

Read the full article “Luminescent Gold Nanocluster-Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability”which was published in Small.

Olli Ikkala

Aalto Distinguished Professor
  • Published:
  • Updated:

Read more news

Artificial intelligence models have been used in the design of the Natal Mind app and especially the cartoon-like digital therapists.
Press releases Published:

Digital doula helps mothers-to-be face the fear of childbirth

Aalto University introduces 12 new world-changing innovations at Slush. On of them is digital doula Natal Mind, a mobile app designed to support the emotional and mental journey undergone by mothers-to-be.
ICEC2025
Research & Art Published:

ICEC 2025 (Italy) -extended deadline for abstracts submissions

The deadline for submitting abstracts to ICEC2025 has been extended by two weeks, up to the end of November 2024.
Learning Centre graphics
Research & Art, Studies Published:

Trial use for American Chemical Society´s e-books

The books in trial use are available for reading until the end of September 2025.
Héctor Merino
Studies Published:

Summer School Alum Story: Teaching innovations through the approach of game design

This August, Héctor Merino travelled to Finland from Almassora, Spain in order to take part in the Game Design course at Aalto University Summer School.