News

Theoretical study elucidates deep surface structure of emerging perovskite material

New research by the CEST group reveals atomic and electronic structure of perovskite material for future photovoltaic applications
Graphic showing 2 phases of the perovskite material CsPbI3
Graphic taken from Seidu et al., J. Chem. Phys. 154, 074712 (2021)
A photo showing doctoral student Azimatu Seidu

The results of a new theoretical study into the surfaces of CsPbI3, an emerging perovskite material with potential for photovoltaic applications, highlights both the complexity of such surfaces and paves the way for future surface science and interface studies.

Cesium lead triiodide is an emerging all-inorganic perovskite material which has remarkable stability in ambient conditions. These properties make it particularly suitable for use in photovoltaic applications.

A recent article authored by Azimatu Seidu unravels the (001) surface of cesium lead triiodide (CsPbI3) using a first principles method. In particular, Seidu and co-workers investigated the atomic and electronic structure of the cubic (α) and orthorhombic (γ) phases of CsPbI3 surfaces. For both phases, Seidu studied surfaces with CsI- (CsI-T) and PbI2-terminations (PbI2-T) and found CsI-T to be more stable than PbI2-T.

In addition, the work explored surface reconstructions of CsI-T by adding and removing Cs, Pb, I, CsI, PbI and PbI2 units. Interestingly, adding or removing units of nonpolar CsI and PbI2 turned out the most stable.

These results now offer concrete guidance for growing favourable CsPbI3 surfaces for use in photovoltaics. Seidu now plans to combine her recent work and previous search on suitable coating materials for perovskites to model stable and robust perovskites for solar applications. The current research combines a machine learning based Bayesian optimization structural search (BOSS) and density functional theory (DFT) to obtain stable coating-perovskite interfaces. 

This article was published in the Journal of Chemical Physics (https://doi.org/10.1063/5.0035448).

  • Updated:
  • Published:
Share
URL copied!

Read more news

A modern lobby with a large brown sectional sofa, colourful artwork, and a staircase. A '50' logo is on the back wall.
Press releases Published:

Hanaholmen’s 50th anniversary exhibition lives on online – making the history of Finnish–Swedish cooperation accessible worldwide

MeMo Institute at Aalto University has produced a virtual 3D version of the anniversary exhibition of Hanaholmen.
Research & Art Published:

Soil Laboratory Exhibition – Exploring the Dialogue Between Human and the Earth in Utsjoki

Soil Laboratory explores the relationship between humans and the earth as a living landscape through ceramic practices in Utsjoki.
Three people walking in winter next to a sign that says 'Aalto University' with snow-covered trees and buildings in the background.
Research & Art Published:

The Finnish Cultural Foundation awarded grants for science and art

A total of 15 individuals or groups from Aalto University received grants
Aerial view of a tram on a curved track surrounded by trees and buildings in a cityscape on a sunny day.
Awards and Recognition, Cooperation, Research & Art Published:

Environmental Structure of the Year 2025 Award goes to Kalasatama-Pasila tramway

The award is given in recognition of meritorious design and implementation of the built environment. Experts from Aalto University developed sustainability solutions for the project.