News

A new type of hand prosthesis learns from the user — and the user learns from the prosthesis

New research enables more functional and robust robotic prostheses.
Aalto_handprosthesis.png
A modern hand prosthesis controlled via the activation of muscles in the residual limb. Photo: Aalto University / Irene Guerra Mendez

Aalto University doctoral candidate Dennis Yeung and his research group have developed and tested a new type of technology that enables better compatibility between a prosthesis and the amputated area. The study was conducted in cooperation with HUS (Helsinki University Hospital) and Imperial College London. The study was funded by the Academy of Finland and the European Research Council.

People whose upper limb has been amputated can control the robotic prosthesis by contracting their remaining muscles. The connection where a prosthesis detects electrical signals produced by the muscle is known as a myoelectric interface. The most advanced prostheses use machine learning algorithms that help interpret these user-generated signals. However, such connections are often very sensitive to external factors, such as sweating, and become weaker over time. To solve this problem, the research community has proposed various algorithms that could better adapt to changing circumstances.

Currently existing systems require adjustments or other measures from the user, but Yeung and his team developed a fully automated system that learns during normal use and thus adapts to varying conditions.

’In this system, the user and the system learn from each other simultaneously. This has potential benefits in improving the convenience and robustness of robotic prostheses’, Yeung says.

More reliable prostheses

The research results were tested in a virtual environment where they were compared to currently existing systems. After these successful tests, the research team tested the user interface with a state-of-the-art prosthesis at Imperial College London by having an amputee conduct Clothespin Relocation Tests which are widely used by physiotherapists to assess the function of the upper limbs.

Adaptive prosthetic devices are rather expensive. Improving the reliability of the systems reduces the financial risks for individuals and public health institutions when obtaining prostheses.

The functionality of the system has been studied with controlled and standardised tests, but the needs of the users can best be determined with qualitative longitudinal studies.

’For future development, it is very important to continue cooperation with health care centres and prosthesis users’, Yeung says.

The results have been published in IEEE Transactions on Biomedical Engineering. The Open Access article is available through this link.

Further information:

Dennis Yeung
Doctoral candidate
Aalto University
[email protected]
+358 50 3230 897

  • Published:
  • Updated:
Share
URL copied!

Read more news

The new, more sensitive infrared sensor brings benefits to many different technologies. Photo: Aalto University / Xiaolong Liu
Press releases, Research & Art Published:

Building better infrared sensors

New innovation significantly boosts sensor responsivity
A group of people posing on large stone steps in an amphitheatre. The building behind has large windows and a green roof.
Research & Art Published:
ınterns
Research & Art, University Published:

Pengxin Wang: The internship was an adventure filled with incredible research, unforgettable experiences, and lifelong friendships.

Pengxin Wang’s AScI internship advanced AI research, fostered global friendships, and inspired his journey toward trustworthy AI solutions.
Radiokatu20_purkutyömaa_Pasila_Laura_Berger
Research & Art Published:

Major grant from the Kone Foundation for modern architecture research - Laura Berger's project equates building loss with biodiversity loss

Aalto University postdoctoral researcher Laura Berger and her team have been awarded a 541 400 euro grant from the Kone Foundation to study the effects of building loss on society and the environment.