News

Alternatives to fossil-based fibres – Helena Sederholm develops sustainable textiles

Today’s outdoor clothing mainly relies on oil-based fibres and chemicals that are harmful for the environment. In her doctoral research, Helena Sederholm develops environmentally friendly water-repellent textiles. She follows the example of nature.
Helena Sederholm photographed in a lab setting, wearing a blue sweater.
Photo: Kristina Tsvetkova.

Sederholm, a doctoral researcher at Aalto University’s Bioinnovation Center, wants to contribute to a sustainable future.

‘Environmental and climate issues are close to my heart. I want to use my education and learning to solve the obstacles to a better world. There are many problems like this in the textile industry’, says Sederholm.

Originally from Espoo, Sederholm was already interested in natural sciences during her basic education and particularly keen on chemistry and biology. She started studying for a bachelor’s degree at the Aalto University School of Chemical Engineering in 2017. 

‘During my studies, materials sciences and, in particular, biomaterials started to attract me. I ended up in the Master’s Degree Programme of Fibre and Polymer Technology, where I was able to familiarise myself with bio-based fibres. It felt right.’

The growing sector needs doctors

In her master’s thesis, Sederholm studied the recyclability of fibres produced with the Ioncell® technology. The thesis indicated that recycled Ioncell fibres are just as suitable for textile production as original cellulose fibres. Sederholm graduated with a Master of Science degree in autumn 2022.

‘In my master's thesis, I got to familiarise myself with the academic world of research. I liked experimental work and enjoyed my time in the research group.’

Postgraduate studies started to interest Sederholm, so she applied for doctoral studies at Aalto University’s Bioinnovation Center, where she was able to start immediately after her master’s studies.

‘Bio-based textiles are still a new field in Finland, but this sector will surely grow. I believe that there will be a need for doctors with expertise and vision related to biomaterials by the time I finish my doctoral studies.’

Using natural phenomena as a model

In her doctoral research, Sederholm develops an environmentally friendly way of producing hydrophobic textiles for outdoor clothing. The hydrophobic properties of today’s outdoor clothing mainly result from synthetic fossil-based fibres. Fossil-free alternatives, on the other hand, contain chemicals that are harmful for the environment. 

‘Fortunately, water repellent materials can be found in nature. I try to copy them and apply similar methods in the Ioncell® process. One option is to develop lignocellulosic fibres using lignin derived from wood. In addition to having hydrophobic properties, the fibres used in outdoor clothing must be sufficiently strong.’

The cross-disciplinary CelluMimicry study combines Aalto University’s expertise in chemical technology and business.

‘We are studying how to commercialise bio-based water-repellent materials and how suited they are for mass production. Sustainability and ecology are growing trends that increase responsibility in the consumption of clothing. On the other hand, there are also many challenges involved with the commercialisation of bio-based materials, such as the cost of clothing and dyeing of textiles.’ 

Sederholm is inspired by the concrete nature of her doctoral research.

‘One day, when my experiments have hopefully been successful, I can hold a piece of fabric in my hand and say: I did it! My research results are not just numbers on the screen or graphs on paper, but material that I can touch and hold.’

Text: Marjukka Puolakka.

Photo: Artistic paper sample

Aalto University Bioinnovation Center

To achieve human wellbeing in planetary boundaries, we need new sustainable solutions to wisely use our natural resources. The Bioinnovation Center especially focuses on innovations in sustainable bio-based materials, with special focus on textiles and packaging.

  • Published:
  • Updated:

Read more news

A serene Japanese garden with a pond, rocks, and various trees, including vibrant red and green foliage.
Press releases Published:

What makes nature restorative? Aalto University researchers explore Finnish forests and Japanese gardens

Biodiversity is central to the restorative power of Finnish forests.
Room with multiple speakers mounted on metal frames in a circular arrangement. A stool and a grid platform are in the center.
Press releases Published:

New technology brings immersive audio to everyone’s pockets

A new type of sound recording technology allows recording of immersive soundscapes with ordinary microphones and an inexpensive accessory
A group of people walking past large windows in a modern building with vertical wooden slats and indoor lights.
Research & Art Published:

Funding for a democratic transition to sustainability

Three projects from Aalto University are among the recipients. The Nessling Foundation's grants aim to advance the implementation of sustainability transitions in the context of democracy, the EU, and nature conservation areas.
Siavash Khajavi wearing glasses and a light blue shirt, standing indoors with a window in the background.
Research & Art Published:

A community where personal connections and career paths intertwine

Assistant professor of operations management Siavash Khajavi explains how studying Industrial Engineering and Management helps students develop hard skills through rigorous studies and soft skills through countless interactions and collaboration.