News

Close cooperation between computer graphics research and games industry benefits everyone

The differences between academic research and industrial R&D are apparent mainly time spans.

One of the objectives of computer graphics is to make the fantasy worlds of computer games possible.

-        In both academic graphics research and the games industry, people are working on ways to draw pictures of places that do not really exist and make them look as real as possible. For example, in Quantum Break just published by Remedy, the aim was to make the game as much like a film as possible by simulating lighting as realistically as possible, states Ari Silvennoinen, a Doctoral candidate at the Department of Computer Science.

The close cooperation between Aalto University and the games industry is based on researchers who have broad experience in both basic research and industry.

-        People generally think that industry and research are not closely connected. But the situation in computer graphics research at Aalto University is quite the opposite because some of the researchers work in both research and industry, says Professor Jaakko Lehtinen.

-        Our task here at university is to take risks and explore possible futures without the restrictions of production environments, whereas in the games industry, solutions must work immediately and have to be compatible with existing systems. However, many of the new technologies implemented by the industry originated from the academic world, even if they were not necessarily feasible for applications when they were published. However, in graphics this delay may sometimes be surprisingly small, Lehtinen adds.

Close collaboration with industry makes it possible to base academic research on data that is realistic from the point of view of applications, e.g. 3D models. This helps the researchers focus on the right problems.

-        Academic freedom means that it is possible to solve interesting long-term problems, whereas an industrial environment is restricted by schedules and budgets that limit the space for solutions. But in its own way, it is also a fascinating world, Silvennoinen adds.

One of the research problems is the calculation of realistic lighting in complex, moving 3D models.

-        For the game Max Payne, we calculated the realistic reflections of lightas a pre-process, and were the first in the world to do it. At the moment, Ari Silvennoinen and I study a model that enables realistic and natural indirect bounced light and shadows in real time. We are working to combine the heavy precalculations and the lighter run-time in a totally new way. If the outcome is successful, it will make computer games considerably more like films and more realistic, again, Lehtinen concludes.

In addition to his academic career, Jaakko Lehtinen has also worked as a researcher at NVIDIA since 2010. Ari Silvennoinen also works as a graphics programmer at Remedy, designing a graphics engine and graphics technology. Jaakko Lehtinen developed Max Payne games at Remedy between 1996 and 2006.

More information

  • Published:
  • Updated:
Share
URL copied!

Read more news

Locker system with a digital display reading 'Scan your Badge'. A large red arrow points down next to the screen.
Campus Published:

Changes in Väre lockers

All student lockers in Väre will be turned into short term lockers. The change is based on an analysis of the usage logs and has been discussed with student representatives.
Aerial view of modern urban buildings with green rooftops and solar panels in a dense cityscape by the water.
Cooperation, Research & Art Published:

Aalto University secures significant funding for critical green transition research

Granted by the Research Council of Finland, the funding will accelerate research in energy systems, microelectronics and sustainable cities
A hand in a blue glove holding a spherical glass flask with a cork, containing a brown, grainy substance.
Research & Art Published:

A Flexible Biorefinery using Machine Learning

Biorefineries convert biomass, such as wood, annual plants or agricultural into products and energy. Research teams in Finland and Germany aim to maximize such product output for a more holistic valorization of our natural resources. The development of these new processes is often slow because they require optimization of many factors. The integration of artificial intelligence (AI) can help us accelerate such a development drastically.
Blue-coral gradient background with a podium floating over balloons and above it a white cloud dispersing a ray of light to its spectral components.
Research & Art Published:

The winner of Aalto University's Open Science Award 2024 is AALTOLAB Virtual Laboratories

The winner of Aalto University's Open Science Award winner for 2024 has been chosen.