News

Controlling quantum states in individual molecules with two-dimensional ferroelectrics

Researchers demonstrated how to control the quantum states of individual molecules with an electrically controllable substrate.
Illustration of controlling internal states of molecules with electric fields.
Researchers used electricity to control the internal states of molecules. Image: Jose Lado/Aalto University.

Controlling the internal states of quantum systems is one of the biggest challenges in quantum materials. At the deepest level, single molecules can display different quantum states, even while possessing the same number of electrons. These states are associated with different electron configurations, which can lead to dramatically different properties.

The capability of controlling the electronic configuration of single molecules could lead to major developments in both fundamental science and technology. On the one hand, controlling the internal states of molecules may allow for the development of new artificial materials with exotic properties. On the other hand, it might also make possible the ultimate miniaturization of classical computer memories, with the two configurations could make it possible to encode a 0 and a 1 in a classical memory unit at the molecular level. However, controlling the internal states of molecules still remains a challenge, and realistic, scalable strategies for overcoming it have not been proposed.

Tuning internal states by applying voltage

In a recent experimental breakthrough researchers from Aalto University and the University of Jyväskylä demonstrated the ability to control the quantum states of individual molecules with an electrically controllable substrate. Their experiment showed how a specific two-dimensional material, known as SnTe, provides the instrumental strategy needed to control molecular states.

The mechanism demonstrated by the researchers is based on the ability of a substrate to tune the internal state of molecules due to internal electric fields. This mechanism, known as ferroelectric molecular switching, enables researchers to control individual molecules merely by applying a voltage to the substrate. The strategy relies on the strong tunability of SnTe by external voltages, which stems from a unique quantum property known as ferroelectricity.

The research team involved the groups of Professors Peter Liljeroth, Adam Foster, and Jose Lado from Aalto University, and the team was led by Professor Shawulienu Kezilebieke from the University of Jyväskylä.

'Our results demonstrate how we can control individual molecules using electrically-tunable two-dimensional materials. From a practical point of view, two-dimensional ferroelectrics have been instrumental, as its ultraclean interface allows realizing this strategy of quantum control. These experiments put forward a strategy to engineer quantum states at the molecular level, opening exciting possibilities in artificial materials and single-molecule electronics,' Kezilebieke says.

'In our experiments, we demonstrated how two-dimensional ferroelectrics allow us to realize electrically switchable quantum states. Controlling quantum states electrically is a major milestone in quantum materials, and here we demonstrated one strategy for doing it at the deepest level of individual molecules,' says PhD researcher Mohammad Amini, the first author of the study.

The quantum control of molecules via substrate effects opens up new possibilities in quantum matter, including engineering artificial molecular materials with switchable states. The research was recently published in Advanced Materials.

White InstituteQ logo on dark background

InstituteQ - The Finnish Quantum Institute (external link)

InstituteQ coordinates quantum research, education, and business in Finland

Kvanttibitit. Kuva: Jan Goetz.

OtaNano

OtaNano is Finland's national research infrastructure for micro-, nano-, and quantum technologies

  • Published:
  • Updated:

Read more news

Photo: Tima Miroschnichenko, Pexels.
Press releases Published:

In low-hierarchy organisations, even key policy issues are discussed in Slack

In a recent study, Aalto University alumn Lauri Pietinalho, a visiting scholar at New York University's Stern School of Business, and Frank Martela, an assistant professor at Aalto University, investigated how low-hierarchy organisations deal with shared policies in confrontational situations and how authority functions within them.
bakteereja ohjataan magneettikentän avulla
Press releases, Research & Art Published:

Getting bacteria into line

Physicists use magnetic fields to manipulate bacterial behaviour
border crossings 2020
Press releases, Research & Art Published:

Nordic researchers develop predictive model for cross-border COVID spread

The uniquely multinational and cross-disciplinary research was made possible by transparent data-sharing between Nordic countries.
Artistic illustration: Algorithms over a computer chip
Research & Art Published:

Aalto computer scientists in ICALP 2024

Five papers from the Department of Computer Science were accepted to International Colloquium on Automata, Languages, and Programming (ICALP).