News

Designer materials with completely random structures might enable quantum computing

Topological randomness may be the answer for lossless electronics and making the nuts and bolts of quantum computers.
Designer materials and quantum randomness

Randomly sprinkled magnetic atoms (red arrows) on a superconducting surface may give rise to a topological superconducting phase. Inset: The onset of the topological phase is signalled by the appearance of so-called Majorana edge mode encircling the system. Image: Teemu Ojanen.

Designing quantum materials with exotic and unprecedented electrical properties has the field of physics teeming with buzz. Researchers at Aalto University in Finland have now introduced a significant turn in this discussion by developing an amorphous material which exhibits topological superconductivity. Until this point, these materials have required highly regular structures to show desired electrical properties.

The findings, published in Nature Communications, bring the field one step closer to application. Topological superconductors and insulators are considered to be possible building blocks of lossless components for quantum computers. While topological superconductors might not exist in nature, they can be fabricated, as the study demonstrates.

‘We have presented a method of fabricating topological materials in amorphous systems with randomly placed constituents. This means we can achieve superconductivity in the material by sprinkling magnetic atoms on a superconducting surface completely at random, not in highly-defined and ornamented lattices, for example,’ explains doctoral student Kim Pöyhönen.

The recent boom on topological superconductors stems mainly from an unconventional quantum-level phenomenon, a collective movement of many individual particles called Majorana fermion excitations. They have been envisioned as critical ingredients of topological quantum computers.

‘Getting highly irregular, random systems to work as topological superconductors will potentially make their fabrication and manufacture much more convenient compared to current methods,’ says research group leader, Docent Teemu Ojanen.

Perhaps for now, the implications of the random quantum material verge only on fundamental research, but that might not be the case for much longer.

‘For topological quantum matter to find its way to actual applications, it’s imperative we find even more new candidates for amorphous topological materials,’ states Ojanen.

Research article

Further information:

Teemu Ojanen, Docent
Theory of Quantum Matter group
Department of Applied Physics
Aalto University
[email protected]
tel. +358 40 510 5406

  • Published:
  • Updated:
Share
URL copied!

Read more news

The new, more sensitive infrared sensor brings benefits to many different technologies. Photo: Aalto University / Xiaolong Liu
Press releases, Research & Art Published:

Building better infrared sensors

New innovation significantly boosts sensor responsivity
A group of people posing on large stone steps in an amphitheatre. The building behind has large windows and a green roof.
Research & Art Published:
ınterns
Research & Art, University Published:

Pengxin Wang: The internship was an adventure filled with incredible research, unforgettable experiences, and lifelong friendships.

Pengxin Wang’s AScI internship advanced AI research, fostered global friendships, and inspired his journey toward trustworthy AI solutions.
Radiokatu20_purkutyömaa_Pasila_Laura_Berger
Research & Art Published:

Major grant from the Kone Foundation for modern architecture research - Laura Berger's project equates building loss with biodiversity loss

Aalto University postdoctoral researcher Laura Berger and her team have been awarded a 541 400 euro grant from the Kone Foundation to study the effects of building loss on society and the environment.