News

Digital twin for optimizing the carbon balance in wastewater treatment

Researchers at Aalto are creating a digital model for automatic continuous predictive process simulations supporting wastewater treatment plant operation in a new project called DIGICARBA. The proposed digital tool will have a wastewater treatment process model connected to continuous data transmission from the Helsinki wastewater treatment plant.
HSY wastewater treatment plant from inside
Aeration basin at Viikinmäki / HSY

Energy consumption reduction and greenhouse gas emissions mitigation are one of the top priorities at many wastewater treatment plants regarding upcoming tightening changes in legislation. Some water pollutants removal, especially nitrogen, requires energy-intensive aeration and a comprehensive operation to minimize the formation of highly intensive greenhouse gas (GHG) – nitrous oxide emitted by the biological nitrogen removal process. While wastewater treatment operation performed by water utility already meets current requirements established by the EU Commission, new techniques and approaches to implementation are required to mitigate energy consumption and greenhouse gas emissions.

Studies on GHG emissions hotspots and process control have been performed within the collaboration of Aalto University Water and Environmental Engineering researchers and Helsinki Region Environmental Services Authority HSY. Based on this collaboration, a new project, DIGICARBA, was started in 2023 to create a digital treatment plant tool to help wastewater treatment operators in process control and optimization.

Digicarba partners figure

‘The proposed digital tool will have a wastewater treatment process model connected to continuous data transmission from the Helsinki wastewater treatment plant to produce predictive simulations. In this case, operators will be able to see the impact of different treatment process changes and decide on the most suitable one with the lowest carbon footprint, energy consumption, and best effluent quality. Also, the developed tool can be used for new operators’ training’, tells Ksenija Golovko, a doctoral researcher who works with the project. 

The potential digital tool could be used globally as many treatment plants will require carbon balance optimizations in the near future. Therefore, a market potential study will also be introduced to develop the technology further. 

Business Finland (“Decarbonized Cities” program) is funding the DIGICARBA project until the end of 2025. The project will be supported by collaboration with Helsinki Region Environmental Services Authority HSY, FCG Finnish Consulting Group Oy, Valmet Oyj, Brighthouse Intelligence Oy, and Mittausguru Oy. The Water and Environmental Engineering Research group will be involved from the Aalto University side, offering Master’s students an opportunity to participate in the project for the thesis work and helping to promote wastewater treatment plants’ path to carbon neutrality. The calls for Master’s thesis positions will be announced later on Aalto University website and DIGICARBA LinkedIn page.

More information

  • Published:
  • Updated:

Read more news

A handbook on the counter of a shop.
Campus, Research & Art Published:

Unite!’s Open Science and Innovation Management Handbook now available online and in print

The handbook is a practical guide for university researchers, R&I support services, and university managers.
Aerial view of a coastal cityscape with a Ferris wheel, modern buildings, and a blue sky above calm waters.
Cooperation Published:
Research & Art, Studies Published:

New covers, writing templates and ordering system for doctoral theses

The current doctoral thesis ordering system will be replaced after 30 Nov 2024. New covers and writing templates have been designed for doctoral theses.
A serene Japanese garden with a pond, rocks, and various trees, including vibrant red and green foliage.
Press releases Published:

What makes nature restorative? Aalto University researchers explore Finnish forests and Japanese gardens

Biodiversity is central to the restorative power of Finnish forests.