News

Greenhouse gas emissions from permafrost area larger than earlier estimated

Plant roots in soil stimulate microbial decomposition, a mechanism called the priming effect. A recent study published in Nature Geoscience shows that the priming effect alone can cause emission of 40 billion tonnes carbon from permafrost by 2100.
Pohjoisen ikirouta-alueen vehreää kasvillisuutta. Kuva: Ive van Krunkelsven
Lush vegetation in the northern permafrost area. Photo by Ive van Krunkelsven

Permafrost is permanently frozen ground which is a huge store of the Earth’s carbon. It stores as much carbon as all the plants on Earth and the atmosphere combined. The surface of the permafrost thaws in summer, allowing plant and soil life to thrive. When microorganisms breathe, they emit greenhouse gases. Scientists have previously anticipated that rapidly rising temperatures will drive the emission of 50-100 billion tonnes permafrost carbon by 2100. On top of that, plant roots feed sugar to the microorganisms in the soil, which the microbes can use to break down more soil organic matter – the priming effect – resulting in even higher greenhouse gas emissions.

“We have known about the priming effect since the 1950’s, but we did not know whether or not this small-scale ecological interaction had a significant impact on the global carbon cycle”, says Research Scientist Frida Keuper from INRAE and Umeå University. She co-led the international research team with Assistant Professor Birgit Wild from Stockholm University.

priming
Mallin avulla tutkijat pystyivät arvioimaan priming-ilmiön vaikutuksia ikiroudan ekosysteemeihin sekä hiili-päästöihin koko 14 miljoonan neliökilometrin laajuisella arktisella ikirouta-alueella.

The team of researchers combined maps of plant activity and detail data on soil carbon content with an extensive literature survey on priming and plant root properties. Associate professor Matti Kummu together with Dr Mika Jalava from Aalto University were responsible in developing a spatially explicit model which combined all this information. The model was used to estimate the priming effect in permafrost ecosystems and its influence on greenhouse gas emissions over the entire arctic permafrost areas, covering circa 14 million squarekilometre.

“With the model we were able to, for the first time, estimate the priming effect on a large scale and identifying the priming hotspots. Further, the modelled results and identified uncertainties help other scientist in their ongoing research” says Kummu.

"These new findings demonstrate how important it is to consider small-scale ecological interactions, such as the priming effect, in global greenhouse gas emission modelling", Birgit Wild continues.

Publication:
Frida Keuper, Birgit Wild, Matti Kummu, Christian Beer, Gesche Blume-Werry, Sébastien Fontaine, Konstantin Gavazov, Norman Gentsch, Georg Guggenberger, Gustaf Hugelius, Mika Jalava, Charles Koven, Eveline J. Krab, Peter Kuhry, Sylvain Monteux, Andreas Richter, Tanvir Shahzad, James T. Weedon, Ellen Dorrepaal (2020) Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming, Nature Geoscience, issue and DOI-number

Read the article in Nature Geoscience

Matti Kummu

Matti Kummu

Professori
T213 Built Environment
  • Published:
  • Updated:

Read more news

Group Picture
Cooperation Published:

DeployAI Partners Gather for Heart Beat Meeting in Helsinki

The European DeployAI project's partners gathered for the Heart Beat meeting hosted by Aalto University Executive Education in Helsinki.
Professori Maria Sammalkorpi
Research & Art Published:

Get to know us: Associate Professor Maria Sammalkorpi

Sammalkorpi received her doctorate from Helsinki University of Technology 2004. After her defence, she has worked as a researcher at the Universities of Princeton, Yale and Aalto.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2024

Computer scientists in ICML 2024
Photo: Tima Miroschnichenko, Pexels.
Press releases Published:

In low-hierarchy organisations, even key policy issues are discussed in Slack

In a recent study, Aalto University alumn Lauri Pietinalho, a visiting scholar at New York University's Stern School of Business, and Frank Martela, an assistant professor at Aalto University, investigated how low-hierarchy organisations deal with shared policies in confrontational situations and how authority functions within them.