News

New machine learning approach speeds up search for molecular conformers

CEST researchers developed a new procedure based on active-learning Bayesian optimization (BO) and quantum chemistry methods to search for molecular conformers
A graphic showing a front cover describing the conformer search method
Photo showing CEST doctoral candidate Lincan Fang
CEST doctoral candidate Lincan Fang

Conformer search continues to be a topic of great interest in computational chemistry, drug design and material science. It is a challenging endeavor due to the high dimensionality of the search space and the computational cost of accurate quantum chemical methods needed to determine the molecular structure and energy. Previously, searching for molecular conformers meant that thousands of structures needed to be relaxed first. Therefore, this process took up considerable time and computational resources even when applied to small molecules.

A recent paper authored by Lincan Fang, Esko Makkonen, Milica Todorovic, Patrick Rinke, and Xi Chen proposes a molecular conformer search procedure that combines an active learning Bayesian optimization (BO) algorithm with quantum chemistry methods to address this challenge. BO active learning smartly samples the structures with low energies or high energy uncertainties, thus minimizing the required data points.

In this paper, the authors tested the procedure on four amino acids (cysteine, serine, tryptophan and aspartic acid).  After only 1000 single-point calculations and approximately 80 structure relaxations, which is less than 10% of the computational cost of the current fastest method, the team found the low-energy conformers in good agreement with experimental measurements and reference calculations.

First author Fang now plans to extend the method to search for structures of molecules that are bonded to nanoclusters.

This research paper is published in the Journal of Chemical Theory and Computation and has been selected as a supplementary cover of the issue.

doi.org/10.1021/acs.jctc.0c00648

  • Published:
  • Updated:
Share
URL copied!

Read more news

ınterns
Research & Art, University Published:

Pengxin Wang: The internship was an adventure filled with incredible research, unforgettable experiences, and lifelong friendships.

Pengxin Wang’s AScI internship advanced AI research, fostered global friendships, and inspired his journey toward trustworthy AI solutions.
Radiokatu20_purkutyömaa_Pasila_Laura_Berger
Research & Art Published:

Major grant from the Kone Foundation for modern architecture research - Laura Berger's project equates building loss with biodiversity loss

Aalto University postdoctoral researcher Laura Berger and her team have been awarded a 541 400 euro grant from the Kone Foundation to study the effects of building loss on society and the environment.
Matti Rossi vastaanotti palkinnon
Awards and Recognition Published:

AIS Impact Award 2024 goes to Professor Matti Rossi and his team

The team won the award for technological and entrepreneurial impact
An artistic rendering of two chips on a circuit board, one is blue and the other is orange and light is emitting from their surf
Press releases Published:

Researchers aim to correct quantum errors at super-cold temperatures instead of room temperature

One of the major challenges in the development of quantum computers is that the quantum bits, or qubits, are too imprecise. More efficient quantum error correction is therefore needed to make quantum computers more widely available in the future. Professor Mikko Möttönen has proposed a novel solution for quantum error correction and has received a three-year grant from the Jane and Aatos Erkko Foundation to develop it.