News

New microscope sets a record for visualizing surface wetting properties

The microscope is 1000 times more precise than current techniques, allowing the creation of wetting maps as a new concept for hydrophobic surface characterization.
Microscope droplet probe on a butterfly wing

Wetting is an everyday phenomenon that represents how well liquid spreads on a surface. When water comes into contact with an extremely water-repellent, or ‘superhydrophobic’ surface, droplets bead up and roll off easily. Aalto University researchers have developed a measurement technique called Scanning Droplet Adhesion Microscopy (SDAM) to understand and characterize the wetting properties of superhydrophobic materials.

“Our novel microscope will promote the understanding of how wetting emerges from surface microstructures. The measuring instrument can also detect microscopic defects of the surface, which could allow coating manufacturers to control the quality of materials. Defects in self-cleaning, anti-icing, anti-fogging, anti-corrosion or anti-biofouling products can impeach the functional integrity of the whole surface,” explains Professor Robin Ras from Aalto University School of Science.

SDAM is extremely sensitive and 1000 times more precise than the current state-of-the-art wetting characterization methods. It also has the ability to measure minuscule features and inconsistencies of surfaces with microscale resolution. Existing instruments for measuring droplet adhesion forces only detect forces down to a micronewton level – not sensitive enough for superhydrophobic surfaces.

“We have used a droplet of water to measure the water-repellent properties of a surface by recording the very tiny nanonewton force when the droplet touches the surface and when it separates from the surface. By measuring on many locations with micrometer spacing between the measurement points, we can construct a two-dimensional image of the surface’s repellency, called a wetting map,” explains Professor Quan Zhou from Aalto University School of Electrical Engineering.

Wetting maps are a new concept for hydrophobic surface characterization and open a window for investigating structure-property relationships in surface wetting.

Up to now, ‘contact angle measurement’ has been the typical method of measuring wetting properties of surfaces. It is prone to inaccuracies, though, for surfaces that are highly repellent to liquid. Unlike contact angle measurement, SDAM does not require a direct line of sight, which allows measuring uneven surfaces such as fabrics or biological surfaces. SDAM can also detect wetting properties of microscopic functional features that were previously very hard to measure. Those microscopic features are important in many biochips, chemical sensors and microelectromechanical components and systems.

The research is conducted by an interdisciplinary team from three schools of Aalto University: School of Electrical Engineering, School of Science, and School of Chemical Engineering. The researchers involved in the study are Ville Liimatainen, Maja Vuckovac, Ville Jokinen, Veikko Sariola, Matti Hokkanen, Quan Zhou and Robin Ras.

More information:

The article "Mapping microscale wetting variations on biological and synthetic water-repellent surfaces" has been published today in Nature Communications.

Liimatainen V., Vuckovac M., Jokinen V., Sariola V., Hokkanen M., Zhou Q., Ras R.H.A.
Mapping microscale wetting variations on biological and synthetic water-repellent surfaces
Nature Communications (2017) 1798. 
http://dx.doi.org/10.1038/s41467-017-01510-7

Robin Ras
Professor
Aalto University
Department of Applied Physics & Department of Bioproducts and Biosystems
[email protected]
tel. +358 50 432 6633
http://physics.aalto.fi/smw

Quan Zhou
Professor
Aalto University
Department of Electrical Engineering and Automation
[email protected]
tel. +358 40 855 0311
http://eea.aalto.fi/en/research/micronanorobotics/

  • Published:
  • Updated:
Share
URL copied!

Read more news

ınterns
Research & Art, University Published:

Pengxin Wang: The internship was an adventure filled with incredible research, unforgettable experiences, and lifelong friendships.

Pengxin Wang’s AScI internship advanced AI research, fostered global friendships, and inspired his journey toward trustworthy AI solutions.
Radiokatu20_purkutyömaa_Pasila_Laura_Berger
Research & Art Published:

Major grant from the Kone Foundation for modern architecture research - Laura Berger's project equates building loss with biodiversity loss

Aalto University postdoctoral researcher Laura Berger and her team have been awarded a 541 400 euro grant from the Kone Foundation to study the effects of building loss on society and the environment.
An artistic rendering of two chips on a circuit board, one is blue and the other is orange and light is emitting from their surf
Press releases Published:

Researchers aim to correct quantum errors at super-cold temperatures instead of room temperature

One of the major challenges in the development of quantum computers is that the quantum bits, or qubits, are too imprecise. More efficient quantum error correction is therefore needed to make quantum computers more widely available in the future. Professor Mikko Möttönen has proposed a novel solution for quantum error correction and has received a three-year grant from the Jane and Aatos Erkko Foundation to develop it.
Three happy students. Photo: Unto Rautio
Research & Art Published:

14 projects selected for seed funding to boost collaboration between Aalto, KU Leuven, and University of Helsinki

The funded projects lay the groundwork for future joint research endeavors, reinforcing the strategic partnership’s goal to fostering impactful and interdisciplinary collaboration.