News

Researchers discovered elusive half-quantum vortices in a superfluid

Gained understanding in quantum physics may be a step towards quantum computers.
A half-quantum vortex combines circular spin flow and circular mass flow, leading to the 
formation of vortex pairs that can be observed experimentally. Image: Ella Maru Studio.

Researchers in Aalto University, Finland, and P.L. Kapitza Institute in Moscow have discovered half-quantum vortices in superfluid helium. This vortex is a topological defect, exhibited in superfluids and superconductors, which carries a fixed amount of circulating current.

‘This discovery of half-quantum vortices culminates a long search for these objects originally predicted to exist in superfluid helium in 1976,’ says Samuli Autti, Doctoral Candidate at Aalto University in Finland.

‘In the future, our discovery will provide access to the cores of half-quantum vortices, hosting isolated Majorana modes, exotic solitary particles. Understanding these modes is essential for the progress of quantum information processing, building a quantum computer,’ Autti continues.

Macroscopic coherence in quantum systems such as superfluids and superconductors provides many possibilities, and some central limitations. For instance, the strength of circulating currents in these systems is limited to certain discrete values by the laws of quantum mechanics. A half-quantum vortex overcomes that limitation using the non-trivial topology of the underlying material, a topic directly related to the 2016 Nobel Prize in physics.

Among the emerging properties is one analogous to the so-called Alice string in high-energy physics, where a particle on a route around the string flips the sign of its charge. In general the quantum character of these systems is already utilized in ultra-sensitive SQUID amplifiers and other important quantum devices.

The research article has been published 14 December in the online version of Physical Review Letters. The article has also been highlighted in online publication Physics (DOI: 10.1103/Physics.9.148). Experiments were done in the Low Temperature Laboratory at the national OtaNano infrastructure. The research group is part of the Centre of Excellence in Low Temperature Quantum Phenomena and Devices at Aalto University.
 

For more information:
Samuli Autti, Doctoral Candidate
Aalto University, Dept. of Applied Physics
[email protected]
+358 400 458 345
Rota – Topological superfluids research group

Article: S. Autti, V.V. Dmitriev, J.T. Mäkinen, A.A. Soldatov, G.E. Volovik, A.N. Yudin V.V. Zavjalov, and V.B. Eltsov: Observation of Half-Quantum Vortices in Topological Superfluid 3He. Physical Review Letters 2016. DOI: 10.1103/PhysRevLett.117.255301.

  • Published:
  • Updated:
Share
URL copied!

Read more news

ınterns
Research & Art, University Published:

Pengxin Wang: The internship was an adventure filled with incredible research, unforgettable experiences, and lifelong friendships.

Pengxin Wang’s AScI internship advanced AI research, fostered global friendships, and inspired his journey toward trustworthy AI solutions.
Radiokatu20_purkutyömaa_Pasila_Laura_Berger
Research & Art Published:

Major grant from the Kone Foundation for modern architecture research - Laura Berger's project equates building loss with biodiversity loss

Aalto University postdoctoral researcher Laura Berger and her team have been awarded a 541 400 euro grant from the Kone Foundation to study the effects of building loss on society and the environment.
An artistic rendering of two chips on a circuit board, one is blue and the other is orange and light is emitting from their surf
Press releases Published:

Researchers aim to correct quantum errors at super-cold temperatures instead of room temperature

One of the major challenges in the development of quantum computers is that the quantum bits, or qubits, are too imprecise. More efficient quantum error correction is therefore needed to make quantum computers more widely available in the future. Professor Mikko Möttönen has proposed a novel solution for quantum error correction and has received a three-year grant from the Jane and Aatos Erkko Foundation to develop it.
Three happy students. Photo: Unto Rautio
Research & Art Published:

14 projects selected for seed funding to boost collaboration between Aalto, KU Leuven, and University of Helsinki

The funded projects lay the groundwork for future joint research endeavors, reinforcing the strategic partnership’s goal to fostering impactful and interdisciplinary collaboration.